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«The thing-in-itself nonsensical. If I remove all the
relationships, all the properties, all the activities of
a thing, the thing does not remain over.»

Friedrich Nietzsche
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Summary

THe increasing interest in social networks, smart cities, and Industry 4.0 is en-
couraging the development of techniques for processing, understanding, and
organizing vast amounts of data. Recent important advances in Artificial Intel-

ligence brought to life a subfield of Machine Learning called Deep Learning, which
can automatically learn common patterns from raw data directly, without relying on
manual feature selection. This framework overturned many computer science fields,
like Computer Vision and Natural Language Processing, obtaining astonishing results.
Nevertheless, many challenges are still open. Although deep neural networks obtained
impressive results on many tasks, they cannot perform non-local processing by explic-
itly relating potentially interconnected visual or textual entities. This relational aspect
is fundamental for capturing high-level semantic interconnections in multimedia data
or understanding the relationships between spatially distant objects in an image.

This thesis tackles the relational understanding problem in Deep Neural Networks,
considering three different yet related tasks. First, we introduce a challenging variant of
the Content-Based Image Retrieval (CBIR) task, called Relational CBIR. In R-CBIR,
we aim to retrieve images also having similar relationships among the multiple objects
present in the images. We define some architectures able to extract relationship-aware
visual descriptors, and we extend the CLEVR synthetic dataset for obtaining a suitable
ground-truth for evaluating R-CBIR. Then, we move a step further, considering real-
world images and focusing on cross-modal visual-textual retrieval. We use the Trans-
former Encoder, a recently introduced module that relies on the power of self-attention,
to relate different sentence words and image regions, with large-scale retrieval as the
main goal. We show that the obtained features contain very high-level semantics and
defeat current image descriptors on the challenging Semantic CBIR task. We then pro-
pose some solutions for scaling the search to possibly millions of images or texts. In
the end, we deploy the developed networks in a large-scale interactive video retrieval
software, called VISIONE, developed in our laboratory. Sticking to the multi-modal
Transformer framework, we tackle another critical task in the modern Internet: detect-
ing persuasion techniques in memes spread on social networks during disinformation
campaigns. Finally, we probe current state-of-the-art CNNs on challenging visual rea-
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soning benchmarks requiring non-local spatial comparisons. After understanding the
drawbacks of CNNs on these tasks, we propose a hybrid CNN-Transformer architec-
ture, constraining the model complexity and reaching higher data efficiency.

In the end, the research presented in this thesis aims to explore novel and excit-
ing directions for an effective and efficient semantic and relational understanding of
multimedia data.
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Sommario

Il crescente interesse verso i social network, le smart cities e l’Industria 4.0 sta in-
centivando lo sviluppo di tecniche per processare, comprendere e organizzare enormi
quantità di dati. I recenti sviluppi nell’ambito dell’Intelligenza Artificiale hanno dato
vita al Deep Learning, una branca del Machine Learning che riconosce autonomamente
i pattern più rilevanti nei dati in input, senza dover dipendere da una selezione guidata
da un esperto umano. Il Deep Learning ha rivoluzionato importanti campi applicati-
vi, come la Computer Vision e il Natural Language Processing; nonstante ciò, soffre
ancora di importanti limitazioni. Sebbene siano stati raggiunti risultati straordinari in
molti campi applicativi, le reti neurali hanno ancora difficoltà nel comprendere la re-
lazione tra elementi semanticamente collegati tra loro ma distanti, in riferimento sia
alla dimensione spazio-temporale ma anche più genericamente alla loro forma (un te-
sto è in sua essenza diverso da un’immagine, anche se può perfettamente descriverla).
Questa mancanza ha ripercussioni negative sulla ricerca di interconnessioni tra oggetti
multimediali aventi natura differente o sulla ricerca di relazioni tra oggetti spazialmente
distanti in un’immagine.

In questa tesi abbiamo affrontato il problema della comprensione relazionale nelle
reti neurali profonde, prendendo come riferimento tre task differenti ma strettamente
correlati tra loro. In primo luogo, abbiamo introdotto il Relational Content-Based Ima-
ge Retrieval (R-CBIR) – un’estensione al task di CBIR classico – il cui scopo è quello
di cercare tutte le immagini che condividano una similarità tra le relazioni che insisto-
no tra gli oggetti in esse contenuti. Abbiamo affrontato il Relational CBIR definendo
alcune architetture capaci di estrarre dei descrittori relazionali ed estendendo il dataset
sintetico CLEVR per ottenere un ground-truth adatto alla valutazione di questo nuo-
vo task. Il passo successivo ha riguardato l’ampliamento di questi risultati preliminari
verso l’utilizzo di immagini reali nel contesto di ricerce cross-modali, dove descrizio-
ni in linguaggio naturale vengono usate come query per cercare in grossi database di
immagini (e viceversa). Abbiamo utilizzato l’architettura Transformer per correlare
elementi visuali e testuali, ponendoci come obiettivo finale la ricerca su larga scala.
Dopo aver effettuato l’integrazione di queste reti in uno strumento per la ricerca inte-
rattiva di video su larga scala (VISIONE), abbiamo osservato come i descrittori ottenuti
siano capaci di codificare elementi altamente semantici, raggiungendo risultati eccel-
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lenti sul task di Semantic CBIR. Abbiamo infine utilizzato queste stesse tecnologie per
risolvere un problema estremamente importante nei social network: la rilevazione di
tecniche di persuasione nelle campagne di disinformazione. L’ultima parte della ricer-
ca si è focalizzata sullo studio delle architetture convoluzionali su semplici problemi di
ragionamento visivo, che richiedono confronti tra forme distanti nello spazio. In que-
sto contesto abbiamo proposto un’architettura ibrida CNN-Transformer che ha ottenuto
ottimi risultati, rimanendo comunque meno complessa e più efficiente rispetto alle reti
concorrenti.

Lo scopo primario di questa tesi è stato quello di esplorare nuovi modelli neurali per
la comprensione semantica e relazionale di immagini e testi, con applicazioni su larga
scala e con immediate estensioni a ulteriori modalità quali audio e/o video.
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CHAPTER1
Introduction

The world is inherently relational, as it is built of complex interconnections between
multiple and possibly abstract entities. Humans perform short-term predictions and
make logical deductions by understanding how entities are interacting — for example,
by observing a frisbie in the air we deduce that a nearby person should have launched
it. At a more fundamental level, physics always describes the world as mathematical
dependencies between measurable variables, constructing working models of the world.
Therefore, understanding relationships is the key to comprehending the complexity of
the reality in which we live. Humans learn to distill high-level concepts and abstract
relationships by processing the sensory data they perceive through their senses. For
this reason, distilling relationships is a way to create knowledge from raw unstructured
data.

Today we live in a world where machines have been given almost full access to hu-
man senses: information is spread over the internet in the form of multi-modal data like
images, texts, and videos carrying high-level concepts, customs of a people, and ideas.
In 2020, according to Statista1, in a single minute more than 500 hours of video were
uploaded to YouTube, and more than 340,000 stories were posted on Instagram. Digital
computers, in the range of a few decades, evolved from evaluating simple formulas to
handling an increasing volume of complex multi-modal data.

Today there is the necessity of understanding all these data to obtain high-level us-
able knowledge, pretty much as humans do. In fact, the vast volumes of information
need to be automatically organized and indexed to be efficiently retrieved; the good old
manual annotation procedure today does not scale with the amount of data produced.
Also, with the recent development of smart cities and Industry 4.0, there is an increas-
ing interest in processing videos from surveillance cameras to automatically understand

1www.statista.com

1

www.statista.com
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Chapter 1. Introduction

abnormalities and monitor human activities to raise alerts when the situation is poten-
tially dangerous or unsafe. All this requires careful filtering of the salient data and a
thought interconnection of the related abstract entities.

For all these reasons, research focused on methods for autonomously extracting
high-level and relational knowledge from raw information. Images, videos, audio, and
texts are unstructured data, in which knowledge is hidden or not directly accessible,
mainly because it is present at different levels of abstractions. We can concentrate on
the color tonalities of an image, and at the same time, we can appreciate its content,
or we can understand the various interactions between the elements contained in the
image to guess how the scene is going to evolve in the successive instants of time.

In the last years, a branch of Machine Learning (ML), called Deep Learning (DL),
really transformed the way unstructured inputs like images, videos, and natural lan-
guage text are processed to derive high level representations. Deep Learning uses neural
networks built of multiple cascading layers, emulating the inner working of the mam-
mal brain to derive abstract representations of the given unstructured input. This novel
paradigm defines an effective way to automatically craft informative features from un-
structured data, relieving the human from the feature creation loop. Despite this new
technology demonstrated astonishing results in many tasks — image classification, im-
age captioning, and object detection, to name a few — it often fails to capture long-term
dependencies and understand abstract relationships among entities that are distant both
in space and/or time. For example, in image processing, current models excel in ag-
gregating information from nearby pixels; however, they struggle to explicitly relate
two distant objects, such as two persons in the opposite edges of the frame. In other
words, although most architectures can perceive the world we live in quite well, they
often struggle in reasoning about the high-level interconnections between the extracted
concepts.

Deep Learning take inspiration from the brain-inspired paradigm, under which ex-
ternal symbols are processed and converted to internal vectors of neural activity. Under
this paradigm, many recent architectures, like Transformers [220] or Relation Networks
[205] capture interdependencies among visual or textual tokens, producing vectors that
carry not only entities but also abstract relationships between them. According to the
Turing Award winners Yoshua Bengio, Yann Lecun, and Geoffrey Hinton, «the main
advantage of using vectors of neural activity to represent concepts and weight matrices
to capture relationships between concepts is that this leads to automatic generaliza-
tion. [...] This facilitates analogical reasoning and suggests that immediate, intuitive
analogical reasoning is our primary mode of reasoning» [31].

Understanding relationships is the key for constructing a very high-level knowledge
of the data, very different from the one that can be collected from analyzing image
patches, distributions of colors, or even frequencies of appearance of words in a docu-
ment. This knowledge can be derived by understanding what are the salient elements or
actors in a multimedia file — a person or a tree in an image or analogously two words
in a sentence — and then understanding their spatial, temporal, or abstract intercon-
nections. At this level of abstraction, the potential is huge: we can enable high-level
understanding of complex situations comprising multiple elements, such as an image
or a video with many interacting actors and objects, or we can even study and enforce
direct correspondence between elements laying in different modalities — for example,

2
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1.1. Objectives and Contributions

we could connect regions from an image with words from a sentence describing it. All
the possibilities offered by the study of relationships move toward creating more se-
mantic representations, to the point that the terms semantic and relational almost line
up.

1.1 Objectives and Contributions

This thesis presents the research carried out during the three-year period of the PhD
program 2018-2021. Our focus has been directed towards using the well-known and
widely studied deep learning framework to understand high-level entity relationships
in visual and textual data, mainly — but not exclusively — for information retrieval
purposes.

More in detail, we tried to stick to the following objectives:

1. Understand the current limits of deep learning architectures when facing visual
relational tasks involving the comprehension of spatial and abstract relationships
between entities.

2. Propose relationship-aware descriptors for enabling highly semantic information
retrieval.

3. Introduce appropriate metrics and benchmarks for evaluating the relational abili-
ties of the proposed architectures.

In the first two chapters, we introduce the reader to our work and provide sufficient
background for understanding the rest of this thesis. In the light of the above-listed ob-
jectives, the main dissertation chapters propose solutions for addressing the following
problems:

Understanding Relationships in Images for Content-Based Image Retrieval Content-based Im-
age Retrieval (CBIR) consists of searching digital images in large databases, without
relying on manual annotations or user-provided metadata. It is an inherently difficult
task due to the well-known semantic gap [54]. Many works in the past used local
features (SIFT, ORB) and their aggregates (VLAD, Fisher Vectors) as image descrip-
tors. In contrast, more recently, features like R-MAC used the representation power of
Convolutional Neural Network (CNN) trained on image classification to acquire higher-
level single-entity details. Nevertheless, some key architectures were recently proposed
to capture higher-level interactions between multiple visual entities; without correctly
understanding abstract or spatial relationships between objects in the image, it is fairly
challenging to forge highly semantic descriptors. In Chapter 3 we introduce a novel
task that directly derives from CBIR, called Relational Content-based Image Retrieval
(R-CBIR), in which we aim to retrieve images containing similar pairwise relationships
between visual entities. In the light of this, we modified a promising relationship-aware
architecture, the Relation Network (RN), to extract relationship-aware features. To fos-
ter this research direction, we extended a promising synthetic benchmark for evaluating
architectures on this novel and challenging task.

3
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Chapter 1. Introduction

Processing Images and Texts for Multi-Modal Matching and Retrieval It is often difficult to
fill the semantic gap by considering only a single modality; humans understand the
world also by communicating concepts and complex relationships using natural lan-
guage. For this reason, the computer vision community is showing a growing interest
in the joint processing of visuals and texts as a promising tool for extracting richer
semantics and abstract entity-entity relationships from the raw image pixels. In Chap-
ter 4 we go beyond the single-modal relational image analysis presented in Chapter 3
to explore visual-textual matching, mainly for applications in large-scale text-to-image
retrieval. Notably, we use the very recently introduced Transformer architecture, and in
particular its Encoder module, to derive relationships between different text or image
entities. Differently from the Relation Network, the Transformer Encoder discovers re-
lationships through the powerful self-attention mechanism, that automatically weights
important vectors by measuring their affinities using dot products. We show the ef-
fectiveness of the produced image and textual features when performing cross-modal
retrieval, and we study and discuss their application in large-scale scenarios. In the
end, we also show how Transformer-based visual-textual architectures can be used to
solve other real-world critical tasks, such as detecting persuasion techniques in social
networks by analyzing memes.

Solving Visual Reasoning Tasks Understanding relationships between visual entities is in-
teresting on its own, as it inspires in-depth studies on both the perception and reasoning
abilities of Deep Neural Network (DNN) required to solve many real-world problems.
In particular, there are some challenging tasks — involving reasoning on spatial con-
figurations of some simple shapes in an image — which are easy for humans and still
extremely challenging for a state-of-the-art neural network. In Chapter 5 we tackle
a very specific subset of visual reasoning problems, called same-different tasks, that
broadly consist in understanding if two shapes in an image satisfy a specific rule that
should be automatically discovered from data. Initially, we probe various state-of-the-
art Convolutional Neural Networks on this task. Then, we propose a Transformer-based
recurrent architecture that can solve the proposed tasks while being simpler and more
data-efficient. Although these tasks involve elementary visual reasoning problems, they
enable several long-term returns: visual puzzles are one of the ways to evaluate human
intelligence; the resulting conclusions can be transferred to critical real-world scenarios
that require more logical and decision-making skills by looking at distant and appar-
ently unrelated inputs, from self-driving or anomaly detection for surveillance applica-
tions to the detection of anomalous patches in medical imaging.

Finally, in Chapter 6, we conclude this dissertation: we sum up our contributions,
and we propose novel research directions in the field of highly semantic multi-modal
information retrieval and abstract visual reasoning. Furthermore, we discuss engaging
real-world scenarios where the results of this research can be applied.

4



i
i

“thesis” — 2022/4/26 — 18:35 — page 5 — #25 i
i

i
i

i
i

CHAPTER2
Background

In this chapter, we provide the reader with the background needed to better appreciate
the core chapters of this dissertation. The main topic deserving a detailed discussion
is the Deep Learning paradigm, the beating heart of the whole thesis. It is discussed
in details in Section 2.1. Namely, we present the overall optimization framework and
some of the regularization techniques, and the loss functions relevant for the whole
discussion. In Section 2.2, we build on these pillars, introducing the main concepts be-
hind Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),
the foundations of modern visual and textual processing architectures. We also pro-
vide details on non-local processing models that capture relationships among distant
entities, such as Relation Networks and Graph Networks. Building on these architec-
tures, in Section 2.3, we present the recently introduced Transformer network. This
particular attentive architecture recently unified visual and textual processing under the
same framework and is very relevant for Chapter 4 and Chapter 5. In Section 2.4, we
present the content-based information retrieval framework, which explains the basics
for large-scale multimedia retrieval using the vector space approach. Lastly, in Sec-
tion 2.5, we leave some details about the datasets used — directly or indirectly — in
this dissertation.

2.1 Deep Learning

Deep Learning is a subfield of Machine Learning, more specifically of Representation
Learning, in which knowledge is represented at different levels of abstraction and en-
coded in successive layers of a so-called Deep Neural Network (DNN). The core char-
acteristic of Deep Learning, opposed to classical Machine Learning, is the automatic
construction of the high-level representations from the low-level input data [27, 29, 72],
to solve a particular task.

5
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Chapter 2. Background

Deep Learning lays its foundations on the idea of Artificial Neural Networks (ANNs),
a model inspired by information processing and distributed communication nodes in
biological systems. Although Artificial Neural Networks have notoriously significant
differences from biological brains [170, 30], many studies evidenced the many analo-
gies [37, 118], up to the point that the inner working of Artificial Neural Networks and
biological brains can be analyzed using similar methods [20].

The Deep Neural Networks used in Deep Learning are composed of a sequence —
or more generally, a graph — of computational units called layers. The layers of a
Deep Neural Networks are non-linear mapping functions which process the informa-
tion coming from the previous layers and propagate the elaborated representation to
the next ones. The term deep comes precisely from the fact that in such architectures
there are multiple — in theory, an unbounded amount — of layers. Deep Neural Net-
works are the modern generalization of the perceptron [201] model, which was shown
to be a universal classifier when composed of a hidden layer of unbounded width and
a non-polynomial activation function [124]. These results derived from an important
milestone in deep learning, the universal approximation theorem [83, 50], which states
that a feedforward network with a linear output layer and at least one hidden layer with
any squashing activation function, such as the logistic sigmoid, can basically approxi-
mate any desired function.

The idea behind Deep Learning is that data distribution in the specific domain of
interest is explained by some unknown function f ?. The goal is to learn the optimal
function f which better approximates f ?. More formally, given an input x, the output
y of a Deep Neural Network (DNN) can be simply formalized as

y = f(x;θ), (2.1)

where f(·) is an arbitrary connection of non-linear parametric layers, and θ is the vec-
tor of parameters of the network to be learned during the training phase. The function
f with its parameters θ is learned from a dictionary of data samples, called dataset.
In the more general case, a dataset is composed of a list of N input-output pairs
X = {(xi,y?i ), i = 1, . . . , N}. The values xi are samples drawn from the real data
distribution, and y?i are the expected output values — ideally obtained by evaluating
the unknown function f ? on the provided data samples. The values y?i are called tar-
gets, and they are usually obtained by manual annotation, although recent advances in
self-supervised methods try to derive this information directly from the inputs xi [101].

The process of training a DNN consists of updating the parameters θ of f so that
the error between the ground-truth values y?i and the predicted outputs yi is as small
as possible. Formally, the optimal parameter’s configuration θ?, considering the whole
dataset X, can be found as follows:

θ? = arg min
θ

E(x,y)∼XL(f(x;θ),y?), (2.2)

where L(·) is the so-called loss (or cost) function, measuring the discrepancy be-
tween the network’s outputs and the target values for each of the given examples. The
optimal parameters θ? are the ones that minimize the error expectation over the training
dataset.

In the following two paragraphs, we dive deeper into the core elements of Deep
Learning. In particular, we first present the Multilayer Perceptron (MLP), the main
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2.1. Deep Learning

ingredient for most — if not all — of the modern DNNs. Then, we present some details
and insights about the optimization procedure to solve Equation (2.2) practically.

2.1.1 The Multilayer Perceptron Model

The Multilayer Perceptron (MLP) model is the beating heart of basically all of the
modern DNN. To understand what a Multilayer Perceptron (MLP) is, we are required
to first introduce its core building block, the perceptron, a model developed back in
1958 [201].

The perceptron constitutes the simplest computation unit in DNNs, and it is inspired
by the biological model of the neuron. The neuron is a very specialized cell that re-
ceives electrical stimuli as inputs through its dendrites and produces an all-or-nothing
electrochemical pulse that can excite other neurons. This pulse, called action potential,
is fired with the right combination of input stimuli only when the threshold potential
is reached. Although the accurate inner-working model of the neuron is very complex,
the perceptron model tries to capture the essence of the computation performed by the
neuron. The electrical stimuli in input and output are modeled by means of real values,
and the firing of the electrical pulse is modelled by the so-called activation function.
Mathematically, given an input x ∈ Rn, the output y ∈ R is computed in the following
way:

y = g(x>w + b) = g

(∑

i

wixi + b

)
, (2.3)

where g(·) is the activation function, w ∈ Rn is the vector of weights associated with
each input, and b is the so-called bias. Seen from a distance, Equation (2.3) defines the
perceptron as a mathematical operator which computes a specific function to an affine
transformation of the inputs.

The activation function should be a non-linear operator which models the frequency
of action potentials of biological neurons. The two historically common activation
functions are S-shaped functions, namely the hyperbolic tangent and the sigmoid. In
recent developments of deep learning, the Rectified Linear Unit (ReLU) is more fre-
quently used as one of the possible ways to overcome the numerical problems related
to the S-shaped functions, such as the gradient-vanishing problem [71]. In recent years,
many ReLU variants — such as the Leaky-ReLU or the Parametric-ReLU — demon-
strated their effectiveness in image classification [237].

The Multilayer Perceptron model trivially derives from the perceptron. In particular,
in Deep Learning, the perceptron is used to create wider and deeper neural networks.
Concerning the network width, m different perceptrons can be used to produce m out-
puts by feeding them with n inputs. This model is obtained by trivially extending the
mathematical formulation of the perceptron as follows:

y = f(x,W,b) = g(x>W + b). (2.4)

Differently from Equation (2.3), the term W ∈ Rn×m is a matrix of parameters encod-
ing, in each column, the weights of the m different perceptrons. Consequently, also the
bias term is extended into a vector b ∈ Rm. The resulting module represented by f(·) is
called layer with a width equal tom. Given d different layers f (1), f (2), . . . , f (d), a Mul-
tilayer Perceptron (MLP) is obtained by creating a chain f(x) = f (d)(f (d−1)(. . . f (1)(x)),

7
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Figure 2.1: The perceptron model (left), which is used to construct MLP with one hidden-layer (right).

which corresponds to stacking together, in sequence, the many layers. A detailed graph-
ical representation of the MLP is reported in Figure 2.1. In the case of MLP, the pa-
rameters θ to be learned correspond to the set of weights and biases of the different
layers. Usually, the MLP is also known as Fully-Connected Neural Network (FCNN).
This term explicitly underlines the interconnections between different layers of a MLP,
where every output unit is connected to all the inputs of the next one. The MLP model
is widely used in many recent visual and textual processing architectures presented in
the following sections.

2.1.2 Optimization

As already anticipated, training a DNN corresponds to finding the parameters θ that
significantly reduce a given cost function J(θ) defined over the training set. Given an
empirical data distribution defined by the training set X, the cost function is defined as

J(θ) = E(x,y?)∼XL(f(x;θ),y?), (2.5)

where L(·) is the loss function defined over each data sample. We emphasize that if
we were given the true underlying distribution instead of the empirical one depicted by
the training dataset X, the task of obtaining θ would be solvable by a standard opti-
mization algorithm. This is where optimization in Deep Learning, and more generally,
in Machine Learning, differs from the standard optimization approaches: we have ac-
cess only to a sample drawn from the true underlying distribution. In the light of this
observation, the objective in Deep Learning is to minimize the so-called empirical risk

E(x,y?)∼X =
1

N

N∑

i

L(f(xi;θ),y?i ) (2.6)

which gives us a way to compute an estimate of J(θ) over the training examples.
Given the difficulty of directly minimizing this quantity due to the non-convex and

non-linear nature of DNNs, it is possible to search for optimal minima in the parameters
space using the gradient descent algorithm.

Gradient Descent Gradient descent is an iterative algorithm that searches for the local
minima of a differentiable function. In deep learning, we are interested in finding the

8
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2.1. Deep Learning

Figure 2.2: Some iterations of the gradient descent algorithm using two different starting points in a
simple parameter space θ = (w1, w2). Figure re-adapted from the work in [40].

minima of the J(θ) cost function with respect to the parameters θ. At each iteration,
the gradient descent algorithm computes a step in the direction opposite to the gradient
of the function evaluated in the current point:

θt+1 = θt − λ∇θJ(θ), (2.7)

where λ is a hyper-parameter known as learning rate, which directly affects the mag-
nitude of the update at each iteration. In principle, this parameter can be estimated
empirically by performing a manual search using the validation set. A too low learning
rate causes a very slow convergence and can increase the probability of getting caught
in local minima; on the other hand, a too high learning rate avoids a curated search of
the parameter space, skipping potentially good solutions.

Although there are no global convergence guarantees in most scenarios, gradient
descent is a straightforward yet effective procedure to search for optimal minima of
very complex non-linear functions. An example of a few iterations of gradient descent
is reported in Figure 2.2. In the case of Deep Neural Network, the gradient of the cost
function J(θ) can be estimated starting from Equation (2.8) as

∇θJ(θ) =
1

N

N∑

i

∇θL(f(xi;θ),y?i ), (2.8)

which, in turn, shifts the problem to computing the gradients of the f function, which
is a DNN, with respect to its parameters. The gradients estimation of the parameters
laying in different layers of a DNN is performed by a crucial algorithm called back-
propagation.

9
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Back-propagation Back-propagation [202] is a widely used algorithm for computing the
gradients in a Feed-Forward Neural Network. In modern Deep Learning (DL) frame-
works, this algorithm has been extended to work with any architecture that can be
unrolled under the form of a directed acyclic graph so that it can deal with more com-
plex network topologies like recurrent networks (see Section 2.2.2). Suppose we are
given a Feed-Forward Neural Network f(x;θ) composed of L layers. The objective
of the back-propagation algorithm is to compute the gradients ∇θJ(θ) with respect
to the parameters through all the layers. According to Equation (2.8), the head of
the computation starts from the scalar error value, or loss, provided by the network:
e(θ) = L(f(x;θ),y). Therefore, if o = f(x;θ) is the output of the network, the
gradient ∂e(θ)

∂θ
can be re-written using the chain rule as

∂e(θ)

∂θ
=
∂e(θ)

∂o

∂o

∂θ
, (2.9)

where ∂e(θ)
∂o

depends on the specific implementation of the loss function, while ∂o
∂θ

can
be found by recursively applying the chain rule of calculus backward through the layers
of f . Generalizing Equation (2.9), we can recursively apply this differentiation tech-
nique, rising all the network layers from its head up to the inputs. More formally, let
f be composed of the L layers {f (1), f (2), . . . , f (L)}, and let oi be the output from the
i-th layer. Then the Feed-Forward Neural Network can be described as follows:

o0 = x (2.10)

oi = f (i)(oi−1;θi), (2.11)

where θi is the set of parameters associated with the i-th layer. We can apply the chain
rule to find the derivative of the loss value with respect to the parameters laying in the
i-th layer by computing

∂L
∂θi

=
∂L
∂oi
· ∂oi
∂θi

(2.12)

=
∂L
∂oL
· ∂oL
∂oL−1

. . .
∂oi+1

∂oi
· ∂oi
∂θi

. (2.13)

The derivatives ∂oi+1

∂oi
and ∂oi

∂θi
are known since they depend on the specific implemen-

tation of the i-th layer of the network, and they can be computed using the outputs
collected during the forward pass with the actual parameters θ. This procedure works
only if all the network layers are implemented with differentiable functions — or as a
combination of differentiable functions. Usually, this is the case, as the core element of
DNNs, the perceptron, is fully differentiable except in zero if the Rectified Linear Unit
(ReLU) activation function is used. However, this single point discontinuity is not a
problem since we can arbitrarily assign one of the two possible values for the derivative
— either 0 or 1. Once the gradients are computed for all the parameters, the back-
propagation algorithm stops. At this point, the actual training process is carried out by
the optimizer, which modifies the parameters on the basis of the computed gradients.

Epochs and Minibatches In Equation (2.8) we described how the gradient is estimated
over the empirical distribution defined by all the training examples. However, in most

10
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machine learning scenarios, only a subset of training samples is used to estimate the
gradients. This subset is usually known as a minibatch, and it is composed of randomly
extracted elements from the training set without replacement. A minibatch also defines
the number of training samples to be processed before computing one gradient descent
step. An epoch is a training cycle that ends when all the training samples have been
processed — which is when every sample has been included in exactly one minibatch.
The minibatch strategy for gradient estimation has some highly desirable effects. First
of all, recall that the standard error of the gradient mean estimated from N samples
in Equation (2.8) is given by σ√

N
, where σ is the true standard deviation of the value

of the samples. The denominator
√
N shows that there are less than linear returns to

using more examples to estimate the gradient. For this reason, minibatches make the
computation more efficient while producing an adequate estimation for the gradient.
On the other hand, the noise introduced in the gradient estimation has some nice effects
during the actual optimization phase, as it increases the probability of escaping local
minima [212].

Optimizers Optimizers are an important tool in the optimization ecosystem of Deep
Learning frameworks. They directly implement the gradient descent iterative algo-
rithm, which updates the parameters in the negative gradient direction as described in
Equation (2.7). However, the criteria used for updating the weights given the gradients
is not fixed beforehand. Instead, many variants of Equation (2.7) have been introduced.
It has been observed that optimizers have an important role in the generalization abili-
ties of Deep Neural Network. Over the years, many weight update techniques have been
proposed, giving rise to a large corpus of different optimization algorithms. Stochastic
Gradient Descent (SGD), and in particular minibatch SGD [202], is one of the largely
used optimizers. Unlike the basic formulation of gradient descent in Equation (2.7),
SGD computes the gradients over a minibatch, updating the weights once every mini-
batch instead of once every epoch. The most important variation of the SGD is the
addition of the momentum term [186]. In fact, vanilla SGD has problems navigat-
ing ravines — areas in the surface curve much more steeply in one dimension than in
another. Therefore, the momentum adds some inertia to the gradient to dampen out
undesired oscillations:

vt = γvt−1 + λ∇θJ(θ) (2.14)
θk+1 = θk − vt, (2.15)

where γ is a hyper-parameter controlling the amount of momentum to use during gra-
dient descent. More recently, the Adaptive Moment Estimation (Adam) optimizer has
been introduced. Differently from SGD, Adam computes adaptive learning rates for
each parameter, similarly to other optimizers like Adagrad [62], Adadelta [250], and
RMSprop. In addition to storing an exponentially decaying average of past squared
gradients like Adadelta and RMSprop, Adam also keeps an exponentially decaying
average of past gradients, similar to momentum:

mt = β1mt−1 + (1− β1)∇θJ(θ) (2.16)

vt = β1vt−1 + (1− β1)(∇θJ(θ))2, (2.17)

11
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Figure 2.3: Underfitting and overfitting on toy data.

where mt and vt are the first- and second-order moments of the gradient, respectively.
These moments are biased towards zero, especially in the first iterations. For this rea-
son, the authors decided to introduce the bias-corrected moments’ estimates:

m̂t =
mt

1− βt1
(2.18)

v̂t =
vt

1− βt2
. (2.19)

(2.20)

At this point, the parameters update rule for the Adam optimization algorithm is as
follows:

θk+1 = θk −
η√

v̂t + ε
m̂t, (2.21)

where ε is a small number that prevents the division by zero, and η is the general
learning rate. Adam works well in practice and compares favorably to other adaptive
learning-method algorithms. At the time of writing, Adam is the primarily used opti-
mizer; it demonstrated very fast convergence while still maintaining very good general-
ization abilities. Very recently, however, recent research papers have noted that Adam
can fail to converge to an optimal solution under specific settings [111]. AdaBound
[149] tried to solve this issue by employing dynamic bounds on learning rate, filling
the gap between the speed of Adam and the generalization abilities of SGD.

2.1.3 Regularization

Until now, we defined how to update the network parameters using the samples from the
empirical distribution, which is defined by the data points in the training set. However,
we need to reinforce that the central problem in Machine Learning is not to achieve
a good performance on the training set but to construct a model able to generalize to
unseen data. All the strategies to achieve this goal are known as regularization tech-
niques. A good regularizer is the one that trades increased bias for reduced variance. In
general, given a family of models or architectures, three possible scenarios are possi-
ble: (1) the model family being trained excluded the true data-generating distribution,
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incurring in a high induced bias; (2) the model family fits the true data-generating dis-
tribution just right; (3) the model family fits the generating process but also many other
possible generating processes, bringing to high variance and low bias.

The limit cases (1) and (3) are also known as underfitting and overfitting regimes
graphically explained in Figure 2.3. Regularization, in particular, refers to all the
techniques which try to move the architectures from scenario (3) back to scenario (2).
Searching directly for the model with the right size is far from being easy. Real-world
generating processes — the ones that underlie images, texts, or audio — are way too
complex to make a reasonable deduction about an appropriately fitting model family.
Instead, in practical scenarios, the best fitting model (in the sense of minimizing/gener-
alization error) is a large model that has been regularized appropriately.

Weight Decay One of the widespread regularization techniques, called weight decay,
works by introducing some constraints to the norm of the parameter values. This kind
of regularization is a simple yet effective way to limit the capacity of the model. Intu-
itively, the main objective is to discourage the model from learning excessively large
parameters, which could cause steep slopes in the learned function (as shown in the
rightmost scenario in Figure 2.3) that directly brings to an overfitting regime. To this
aim, weight decay works by adding a penalty Ω(θ) to the task-specific loss function:

Ĵ(x,y,θ) = J(x,y,θ) + αΩ(θ), (2.22)

where α ∈ [0, inf) is a hyperparameter that weights the relative contribution of the
norm penalty term. The most commonly used type of weight decay is the L2 weight
decay [169], where Ω(θ) = 1

2
||θ||22. As studied in [169], L2 weight decay produces a

more uniform utilization of all the available parameters, penalizing under-utilized and
over-utilized weights.

Dropout Dropout [213] is a regularization technique that acts on the neural activations
directly inside the model. In particular, a certain number of activations from a DNN
layer are randomly ignored or dropped out during training. This per-neuron random
deactivation is guided by sampling from a Bernoulli distribution, with a probability
p chosen a priori. The dropout reduces the co-adaptation of neurons, which in turn
brings the network to learn different yet redundant representations, increasing the net-
work generalization. During inference, the random deactivation is disabled so that
all the neurons can contribute to the final augmented representation. Dropout can be
thought of as a method of making model ensemble practical for large DNNs. In fact,
model ensembling has been proved to achieve very good generalization results [35], at
the expense of higher computational complexity and memory consumption. From this
perspective, dropout solves this problem by simulating, with a single model, a large
number of different network instantiations.

Dataset Augmentation Given that generalization heavily depends on the number of avail-
able training samples, dataset augmentation is a simple yet effective way to produce
new data from existing ones. This method is especially easy to apply on images:
dataset augmentation randomly applies geometric transformations — rotations, flips,
crops, shrinking — to the input images. Pushed to the limit, augmentation also consists

13
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Figure 2.4: The original image (top-left) with a set of strong augmentations, altering both image geom-
etry and pixel values. From https://github.com/aleju/imgaug.

of the superimposition of photographic filters, the addition of noise, or the deliberate
deletion of small chunks from the image (Figure 2.4).

Augmentation does not change the underlying semantics on classification tasks, and
the provided labels do not need to be modified. In tasks like object detection, instead,
the labels — made up of the bounding boxes enclosing the different objects — should
be changed accordingly to the geometric transformation applied to the images.

Parameter Sharing The easiest way to constrict our search for the right family of model
architectures is to exploit some prior knowledge about the specific task we want to
solve. In particular, from knowledge of the domain and model architecture, we might
know that there should be some dependencies between the model parameters. A pop-
ular way to fix a constraint between parameters is to force a given set of parameters to
be equal. The most obvious and striking consequence of this constraint is that the free
model parameters decrease, thus making the model lighter and less prone to overfitting.
Secondly, parameter sharing imposes knowledge priors to the model so that the space of
possible solutions is drastically pruned. This kind of regularization is essential for un-
derstanding and generalizing knowledge in very specific domains. For example, Con-
volutional Neural Networks (CNNs) [121] process image patches using kernels with
shared weights along the spatial dimensions to enforce the translation invariance prior
— e.g., a cat remains a cat even after being moved in the image. Similarly, recently
introduced Transformers [220], as well as Graph Neural Network (GNN) [257] share
weights among the input vectors, to enforce the permutation invariance prior. Param-
eter sharing, in the end, is one of the keys for achieving combinatorial generalization,
and the resulting relational inductive biases [23] can facilitate learning about abstract
entities, relations, and rules.

2.1.4 Common Loss Functions

In Section 2.1.2 we discussed how a DNN could be trained given a model, some data,
and a loss function L defined over every data sample. In this section, we dive into
some common loss functions used in real-world DL applications and useful in this
dissertation. The loss function mathematically represents the objective that we want to
reach and, in turn, defines the task that we want to solve.

Cross-Entropy Loss Cross-entropy is the standard loss function employed in classifica-
tion problems. The cross-entropy measures the performance of a classification model
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whose output is a discrete probability distribution overC classes. More formally, cross-
entropy is defined as the divergence between two probability distributions — the em-
pirical one q(x) produced by the network and the target one p(x). In particular, it
computes the average number of bits required to encode data having distribution p(x)
when we use instead a distribution q(x):

H(p, q) = −
∑

x

p(x) log(q(x)) (2.23)

Applied to neural network classifiers, for a single sample, it assumes the following
form:

LXE(y,y?) = −y? · log(y), (2.24)

where y is the estimated distribution over C classes and y? is the ground-truth vector.
The estimated distribution y can be easily obtained from the activations of the last layer
of a network, by using the softmax(·) function:

softmax(y)i =
exp(yi)∑
j exp(yj)

, (2.25)

which rescales the elements of the C-dimensional output so that they lie in the range
[0, 1] and sum to 1. This loss is widely used for solving tasks like image classification
[117], object detection [198, 195], and Visual Question Answering (VQA) [205, 174,
106].

Mean Squared Error Loss Mean Squared Error (MSE) is used for regression problems.
In many cases, it is useful to force the model to output vectors that should be as near
as possible to a given target real-valued vector. In this case, the Mean Squared Error
(MSE) is defined as

LMSE(y,y?) =
1

2
||y − y?||2, (2.26)

where y is the network’s output, and y? is the ground-truth real-valued vector. The scale
factor 1

2
is used for simplifying the gradient computation. This loss is largely used for

predicting the bounding box coordinates in object detectors [198, 195] or reconstructing
images by regressing on the pixel values [243].

Triplet Loss Unlike MSE and cross-entropy losses, whose objective is to learn to repro-
duce the labels or the vectors provided as targets, triplet loss is used to predict relative
distances between inputs. For this reason, the triplet loss is usually employed to perform
metric learning. In metric learning, the objective is to construct a space equipped with
a given metric (e.g., the Euclidean metric), where similar elements lay near together
while dissimilar elements are placed far apart. This task requires that every element of
the dataset is annotated with a distance or a similarity score. Often, this score is binary,
meaning that a pair of elements from the dataset are either completely similar or abso-
lutely dissimilar. This formulation has very intuitive use cases. For example, suppose
every point represents an image of a person. In that case, this loss can easily solve the
re-identification problem: the vectors associated with the same person are placed near
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Figure 2.5: A visual representation of the dynamics operated by the triplet loss. Positive examples
are pulled towards the anchor, while the negatives are pushed away, so that there is a margin of α
between the farthest positive and the nearest negative.

in the space, while vectors from different persons are distant. Given a query person, we
can perform a K-nearest neighbors (KNN) search in the resulting space to find the most
similar persons — hopefully finding images of the same person in the first positions.
The triplet loss uses triplets of points from the training set; these triplets are composed
of an anchor point xa, a positive example xp, and a negative example xn. The triplet
loss aims to increase the similarity between the anchor point and the positive exam-
ple while decreasing the similarity between the anchor point and the negative example.
Formally,

Ltri(xa,xp,xn) = max(0, α− S(xa,xp) + S(xa,xn)), (2.27)

where α is a margin that controls the minimum gap between the farthest positive and
the nearest negative. The dynamic operated by this constraint is depicted in Figure 2.5.
Instead, S : Rn × Rn → R is a similarity function taking two points x1,x2 ∈ Rn, and
returning their similarity score. Usually, the output score is a value laying in [0, 1]. The
most widely adopted similarity function is the cosine similarity, defined as

Scos(x1,x2) =
x1 · x2

||x1||||x2||
. (2.28)

The choice of the negative selection policy is critical for the success of this kind of
learning. The trivial solution consists in choosing negatives at random. Although being
a simple policy, it usually yields suboptimal solutions: many negatives are too easy, and
they cannot push the discriminative power of the model to the limit. Therefore, the hard
negative mining policy is usually used: the one closest to the anchor is chosen among
all the negatives. The search for the hard negative is often performed inside the training
minibatch for performance reasons and not on the whole training set. These concepts
are widely employed in Chapter 4, where a variation of the triplet loss is employed in a
multi-modal scenario to learn a common embedding space.
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2.2 Visual and Textual Processing Architectures

In Section 2.1, we provided the reader with a general understanding of the sophisticated
Deep Learning framework. In this section, we move a step further, presenting the
most common and widely adopted models able to process the most widespread media
types — images and texts. Being both these modalities of primary importance for the
whole dissertation, it is worth spending some time on the most important and recent
architectures.

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a particular kind of Feed-Forward Neural
Network particularly suitable for processing data having a known grid-like topology.
Many raw digital data coming from the sensory world have this format. For example,
digital images are nothing more than 2-D arrays of pixels, and time-series — like audio
signals — can be considered 1-D arrays of samples. The term convolutional refers
to the mathematical concept of convolution, which is, in information theory, a widely
adopted operation used to process this kind of sensory data. A Convolutional Neural
Network (CNN) is a network that uses the convolution operation in at least one of its
layers.

Mathematically speaking, the convolution operation defined over a discrete-time
input sequence X[t] is defined as

S[t] = (X ∗K)[t]
∑

i

X[i]K[t− i], (2.29)

where K[t] is the so-called kernel of the convolution. The kernel can be thought of
as a fixed discrete-time function applied to a window sliding over the input sequence.
If the input sequence is 2-D, as in the case of images, the formula in Equation (2.29)
can be easily extended by using two summations, together with a 2-D kernel function.
Therefore, given an image I[i, j] indexed using row indexes i and column indexes j,
the convolution operation is defined as

S[t] = (I ∗K)[i, j]
∑

m

∑

n

I[m,n]K[i−m, j − n]. (2.30)

Although the term convolution has been widely adopted in the DL community, the
actual operation implemented in CNNs is called cross-correlation. Indeed, the defini-
tion of the cross-correlation operation is very similar to the convolution; however there
is a foundamental difference: cross-correlation does not flip the kernel with respect to
the input sequence:

S[t] = (I ∗K)[i, j]
∑

m

∑

n

I[m,n]K[i+m, j + n]. (2.31)

With this new definition, the cross-correlation loses the commutativity property, which
is not a mandatory requirement for the theoretical foundations of CNNs. However,
following the trend, for the rest of the dissrtation we refer to the cross-correlation op-
eration simply as convolution. A graphical example of 2-D convolution is shown in
Figure 2.6.
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Figure 2.6: A trivial example of 2-D convolution. The input grid of size 7 × 7 is processed by a 3 × 3
kernel to produce an output feature map of size 5× 5.
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Figure 2.7: An example of a CNN with two convolutional layers, an average pooling layer, and a final
three-layer MLP to produce the probabilities over two output classes.

In practical implementations, convolutional layers in a CNN are composed of several
kernels, each processing the same input image. Different kernels, in fact, can capture
different features of interest from the image and propagate the acquired information
to deeper layers for further processing. Each output image resulting from applying a
single kernel to the input image is usually called feature map; thus, each layer outputs a
certain number of feature maps, more precisely one for each applied kernel. Also, dif-
ferent from the strict mathematical definition, in CNNs the convolution can be further
customized by acting on the so-called padding and stride — parameters that control the
amount of input padding and the amount of movement of the kernels respectively.

Usually, going deeper, the features map spatial resolution is decreased while the
number of kernels is increased so that features maps lose their spatial resolution on
behalf of higher-level and more abstract representations. For the classification task, the
final spatial information in output from the last convolutional layer is collapsed to a
single vector by either flattening or average pooling, and a MLP produces the logits
over the output classes [117]. A graphical representation of a classical CNN network is
shown in Figure 2.7.

Sparse Connections and Parameter Sharing One of the winning characteristics of CNNs
is their use of sparse connections, which simplify the computational graph and pro-
vide an essential architectural prior: the spatial locality prior. Distant pixels are not
usually directly correlated, especially when searching for low-level features like edges,
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contours, or corners; for this reason, it makes perfect sense to process together only
nearby pixels. Thus, the convolution operation can be implemented using perceptrons
that are stimulated by only neighboring pixels — the ones in the grid defined by the ker-
nel. Another important peculiarity of CNNs is the massive use of parameter sharing.
Practically speaking, the sliding kernel is implemented by simultaneously processing
all the possible windows using many perceptrons with tied weights along the spatial
dimensions. This constraint forces the CNN layers to be invariant to translation: in-
tuitively, the network is discouraged from embedding positional information into the
kernel weights.

Pooling Convolutional layers can be optionally interleaved by pooling layers. The
pooling operation has the role of diminishing the spatial resolution of feature maps
by aggregating pixels using a symmetric function — sum, average, or maximum. Pool-
ing is often a very aggressive way to aggregate spatial information. For this reason, in
many modern implementations, pooling is progressively less used in favor of convo-
lutions with higher stride or learnable pooling layers [249]. Pooling layers are widely
used at the end of the CNN for obtaining a flattened vector suitable for the final MLP
classifier [138, 80].

Widely-used CNNs Many different CNNs have been proposed in the literature for solv-
ing the image classification task — one of the core tasks in modern computer vision.
The first Deep Convolutional Neural Network to defeat classical approaches on the
classification task was the AlexNet [117]. Alexnet is comprised of five convolutional
layers and a final three-layer MLP outputting logits over the output classes. It uses
ReLU activations as non-linearities, and it is composed of around 80 million parame-
ters. It achieves a Top-5 error rate of 15.3% on ImageNet. Immediately after the success
of this straightforward network at the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) in 2012, many variants were proposed. Inception [218], also known as
GoogLeNet, won the ILSVRC in 2014. Different from Alexnet, the Inception network
analyses an input feature map using different convolutional layers with different kernel
sizes and strides. In the end, it concatenates the obtained representations to produce
the output feature map. With the use of parallel convolutions — together with the large
amount of max-pooling and 1-D convolutions to reduce the features map sizes — the
Inception (Version 1) network is able to achieve better results at lower costs — it is
comprised of only 5 million parameters, 12 times less than AlexNet. Together with In-
ception, also the VGG network [138] participated in the challenge in 2014, securing the
1st runners-up position. Despite not winning the competition, VGG architecture was
appreciated and became one of the most popular image classification models. VGG
takes its name from the group that developed it, the Visual Geometry Group from the
University of Oxford. The main characteristic is that, instead of using large-sized fil-
ters like AlexNet and ZFnet, it uses several 3×3 kernel-sized filters consecutively. The
downside of this network is that it has a lot of parameters — about 138 million — so it is
quite expensive to train. There exist two major versions of the Visual Geometry Group
(VGG), the VGG-16 and VGG-19, composed of 16 and 19 layers, respectively. Resid-
ual Networks (ResNets) [80] won the ImageNet competition in 2015, and they defined
a major milestone in image processing. ResNets solve an important problem present in

19



i
i

“thesis” — 2022/4/26 — 18:35 — page 20 — #40 i
i

i
i

i
i

Chapter 2. Background

f

xt

ht

h0 f

x1

h1
f

x2

h2
f

x3

h3
f

x4

h4
f

x5

h5

Figure 2.8: A blueprint of a Recurrent Neural Network (RNN). The schema on the right is the unrolled
version of the recurrent block on the left.

almost all the previously presented architectures. Increasing the network depth has the
undesired effect of augmenting the chances of overfitting. Although there usually exists
an optimal network depth that perfectly fits the requirements of the downstream task,
it is not usually known beforehand. Residual Networks solve this problem by enabling
each layer to learn the increments with respect to the inputs x to obtain the next feature
map y: y = x + f(x,θ). This is implemented by adding residual skip connections to
the computational graph. With this trick, a layer f (l) of the network can easily learn
the identity transformation — putting its parameters θl = 0 to bypass the computa-
tion. There exist different variants of the ResNet architecture, obtained by varying the
number of residual modules. The most famous ones are the ResNet-18, the ResNet-
50, ResNet-101 and ResNet-152. A major variation of ResNets, called ResNeXt [236]
secured the 1st place in the competition in 2016, settling down the Top-5 error rate to
4.1%.

2.2.2 Recurrent Neural Networks

While CNNs are suitable for processing grid-like data, Recurrent Neural Networks
(RNNs) are architectures meant to process sequences. RNNs are of great importance
as they are widely used to process natural language text as a sequence of words.

Unlike Feed-Forward Neural Networks, RNNs are stateful architectures. The output
depends not only on the given input, but also on the actual internal state — called also
hidden state — of the network [72]. The mathematics driving RNNs is very similar to
the one describing discrete-time non-linear dynamical systems: given a sequence S[t]
of vectors xt ∈ Rn, the output yt ∈ Rm at each timestep t is given by

ht = f(xt,ht−1) (2.32)
yt = g(ht), (2.33)

where f , g are non-linear functions implemented by DNNs, and ht ∈ Rs is the
hidden state. Notice how the dimensionalities of the different vectors involved x, y,
and h can in principle be different and depend on the actual implementation of the f
and g functions. Usually, many core implementations assume the output to be directly
the hidden state (i.e., they assume g to be the identity function). The g function is then
actively employed in many downstream applications, like text generation, to produce
meaningful word embeddings from the network’s hidden state.

This mathematical description can be graphically visualized by adding a recurrent
connection to the f function block. Instead, the underlying computational graph is
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Figure 2.9: The cell architectures of GRUs and LSTMs. Note how the GRU eliminates the need of the
cell state ct, in favour of the hidden state only.

always unrolled, and it is often used to understand better how the gradients can be
computed when recurrent connections are present. The two graphical representations
are reported in Figure 2.8. Given that the functions f and g are fixed for every ele-
ment of the sequence, the weights of the functions f and g are shared over the different
timesteps. This is very similar to the parameter sharing adopted in CNNs, except that
here it happens along the time dimension. Parameter sharing, in this case, makes the
network weights independent of the actual timestep, which is a highly desirable prop-
erty to handle variable length — and virtually endless — sequences of vectors.

Widely-used RNNs In literature, many RNNs variants have been proposed, mainly lever-
aging different implementations for the f function. Vanilla RNNs usually refer to the
Elmann implementation [64], which uses the following hidden state update function:

ht = tanh(Wihht−1 + bih + Whhxt + bhh), (2.34)

where the outputs of two perceptrons processing the input and the previous hidden
state respectively — Wihxt + bih and Whhxt + bhh — are summed together and then
passed through a tanh(·) activation function to produce the next hidden state. De-
spite their simplicity, vanilla RNNs suffer from two significant issues: catastrophic
forgetting [114] and gradient vanishing [28]. To mitigate these problems, two architec-
tures were proposed: Long Short-term Memorys (LSTMs) and Gated Recurrent Units
(GRUs), both introducing the concept of gates. The LSTMs [82] main recurrent block
is called cell, and the cell state can be considered the memory of the network. The cell
of an LSTM is built of three gates: the forget gate, which decides what information
should be thrown away or kept; the input gate, which decides how the input influences
the actual cell state; and the output gate, forming the next hidden state from the cell
state. Gates are implemented as neural networks with their own parameters — always
shared among the different timesteps. The internal arrangement of the LSTM cell is
shown in Figure 2.9a. The LSTMs demonstrated very good abilities on memorization
of longer sequences with respect to vanilla RNNs, while improving the optimization
due to the drastic attenuation of the gradient vanishing problem. GRUs [46] are the
next-generation RNNs. GRUs are in principle very similar to LSTMs, except that they
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use only the hidden state — and not also the cell state — to define the memory of
the network, as shown in Figure 2.9b. The reset and the update gates serve similar
purposes as the ones in the LSTM cell; however, the simplicity of the GRU cell dras-
tically increases the network efficiency, while maintaining a competitive performance
with respect to the LSTMs. In real use cases, these networks are often arranged in a
bi-directional setup, where two different instantiations of the architecture are used to
analyze the sequence; the former processes the sequence in the forward direction, while
the latter in reverse. The final outputs are obtained by merging the individual output
vectors from the two models.

2.2.3 The Relation Network (RN)

The Relation Network (RN) architecture [205] is the first architecture proposed to han-
dle spatial relationships explicitly and perform visual-language relational reasoning.
The RN module obtained impressive results on the Relational Visual Question An-
swering (R-VQA) task, which consists in answering complex relational questions on
the objects’ attributes and positions from the input image. It combines input objects
forming all possible pairs, and it applies a common transformation to them, producing
activations aimed to store information about possible relationships among input objects.

For the specific task of R-VQA, authors used a small CNN to learn N × N visual
object representations of size C, that are then fed to the Relation Network (RN) mod-
ule and combined with the textual embedding of the question produced by an LSTM,
conditioning the relationship information on the textual modality. Notice that, in this
formulation, an object is each of the features from the last convolutional layer. There-
fore, it could represent a relevant item in the image or simply an element from the
background. Mathematically, the RN module is described by the following equations:

r =
∑

i,j

gθ(oi,oj,q) (2.35)

y = fφ(r), (2.36)

where gθ and fφ are parametric functions whose parameters θ and φ can be learned
during the training phase. Specifically, in the original implementation, they are MLPs.
The features oi and oj correspond to the pair of C-dimensional object features in out-
put from the CNN, and q is the question embedding vector obtained from the LSTM
module. There are N2 possible objects in output from the CNN; therefore the number
of binary relationships is N4. The architecture is shown in Figure 2.10. We notice
from Equation (2.35) that the gθ function shares the weights with all the pairs being
processed, while fφ in Equation (2.36) operates on the single aggregated vector r.

The overall architecture composed of CNN, LSTM, and the RN core can be trained
fully end-to-end, and it can reach superhuman results on the challenging CLEVR dataset,
described in more detail in Section 2.5. This innovative architecture, in some ways,
anticipates the self-attention mechanism of the more recent Vision Transformers, ex-
plained in detail in the following section. In fact, the mechanism put in place by the
Relation Network is a simple yet effective way to produce visual contextualized vectors,
where the early concatenation of the question vector to all the resulting visual couples
before the application of the gθ function works as a simple yet effective visual-textual
attention mechanism.
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Figure 2.10: Relation Network (RN) architecture.

In some sense, even CNNs can construct high-level representations by merging all
the activations in a predefined spatial neighborhood. Nevertheless, CNNs only allow
the discovery of local relationships (i.e, the ones between a pixel or a small image
patch and the neighboring ones); this is certainly useful for giving a group of pixels
a high-level meaning. However, complex real-world images are usually composed of
many interacting elements, where abstract interactions can happen among spatially dis-
tant actors (e.g., a football player and the ball he is going to receive). For this reason,
the coupling among distant representations performed by the Relation Network helps
in capturing possible binary relationships among apparently distant and unrelated ele-
ments in the image. Thanks to these insights, the RN obtained remarkable results even
in other contexts outside R-VQA. The authors in [216] used the relational abilities of
this module to pre-train a network for few-shot learning; in [19], the RN was used to
solve Raven Matrices [253], and in [112] the authors studied the effect of this relational
module in the same-different task, which is discussed in detail in Chapter 5.

2.2.4 Graph Networks

In [23] the authors demonstrated how the Relation Network architecture could be gen-
eralized to Graph Neural Networks (GNNs) [208, 229, 221], which recently acquired
an important role in the processing of structured data. A GNN is a particular kind of
DNN, whose underlying architecture is a graph. A graph is a collection G = (V,E) of
vertexes V = {v0, v1, . . . , vN} and edges E ⊆ {(u, v)|u, v ∈ V}. A GNN associates
vertexes and edges the embeddings hv ∈ Rn and eu→v ∈ Rm, respectively, and it is
driven by the message-passing paradigm formalized as follows:

m(`)
u→v = g

(`)
θ

(
h(`−1)
v ,h(`−1)

u , e(`−1)
u→v

)
(2.37)

m(`)
v =

∑

u∈N (v)

m(`)
u→v (2.38)

h(`)
v = f

(`)
φ

(
h(`−1)
v ,m(`)

v

)
. (2.39)

These equations describe how a message is processed and propagated through the nodes
in the graph at a certain timestep `. In particular, the features hu of the nodes in a
neighborhood N (v) of the node v, are first processed by the gθ parametric function,
also called message function. Then, the resulting messages mu→v are collected at node
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Figure 2.11: A single step of message passing for the sample graph shown on the left. For ease of
understanding, we only show the message passing on the target node v = 4, where the neighborhood
is N (4) = {2, 3, 5, 6}. The same procedure should be applied to all the other nodes.

v and aggregated using the function
∑

— which is usually a summation, although
it could be any symmetric function. Finally, the resulting aggregated message mv is
processed by the parametric function fφ, also called update function. The resulting
vector hv is stored in v and propagates to its neighbors in the next message passing
step. A graphical representation of this procedure is shown in Figure 2.11. The number
of steps of the message passing algorithm is usually fixed, and it can be considered the
depth of the GNN.

We can notice how the gθ and fφ functions play the same role as the ones in the
Relation Network (RN) architecture. In particular, the RN can be considered as a par-
ticular kind of GNN having (a) no edge features eu→v, (b) gθ and fφ implemented as
MLPs, and (c) the underlying graph complete — i.e., the underlying graph has all the
nodes connected with all the others.

The Graph Neural Network framework is very general, and it can be used to model
other well-known architectures like CNNs. In fact, convolutional feature maps can be
modeled as a grid-like graph, where (1) the sliding kernel plays the role of the message
function gθ, (2) the aggregation function is a sum (implementing the scalar product
between the features and the kernel weights) and (3) the update function fφ is the iden-
tity function. Nevertheless, Graph Neural Networks became the reference architecture
for understanding abstract relationships between high-level concepts extracted from
images rather than processing low-level pixel inputs. The RN is the first step in this
direction. More recently, Graph Neural Networks have been used to reason on the in-
terconnections between words in the sentences or between visual concepts in images
for image-text matching [255, 137], image captioning [129], or VQA [126].

Graph Neural Network are also at the core of two important architectures proposed
in the last few years. The first one, Capsule Networks [203, 81], tries to solve the prob-
lem of spatially relating parts of an image with the whole (for example, understanding
that a face is a composition between some possibly distant objects — eyes, years, nose
— properly positioned and oriented). The second, which grasped more attention in
the Computer Vision community, is the Transformer architecture [220]. Given the role
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Transformers play in this thesis, they are discussed in great detail in the next section.

2.3 Transformer Networks

The Transformer architecture [220] is a model used to process data that is natively
encoded as a set of vectors. The Transformer sees his birth in Natural Language Pro-
cessing (NLP). In fact, it has been initially proposed to address the catastrophic for-
getting problem of RNNs in text traslation tasks, and more generally, in the deep com-
prehension of long texts. Previous works attempted to solve the problem augmenting
RNNs with attention mechanisms [17, 113]. The attention tool enables direct weighted
shortcut connections to the input tokens, in turn avoiding the necessity to store all the
meaning of a long sentence in the single hidden state of a LSTM or a GRU. In RNNs
the attention mechanism can be considered a sort of plugin which dynamically learns
to weigh the contribution of each of the input tokens during the decoding phase. The
attention module requires a minimal engineering effort: it is learned end-to-end, as it is
fully differentiable, and it automatically adapts the per-token weights to maximize the
performance on the downstream task.

Given the promising role of the attention mechanism, the authors in [220] moved a
step further, demonstrating that the attention mechanism alone — without the underly-
ing RNN — is sufficient to outperform previous architectures on translation tasks. The
Transformer architecture they proposed is structurally similar to a recurrent encoder-
decoder architecture [217, 17]; however, they completely redefined the implementation
of the encoder and decoder modules using attention solely as the core mechanism.

More in detail, the source sequence {x1,x2, . . . ,xS} is processed using the trans-
former encoder model, which creates a set of contextualized vectors {z1, z2, . . . , zS},
called memory vectors, encoding the input sequence. Using the memory vectors, the
transformer decoder module predicts the output representations {y1,y2, . . . ,yT}, which
in turn are used to generate the probabilities over each output word. A complete scheme
of the Transformer architecture for text translation is reported in Figure 2.12. At each
decoding step t, the model is auto-regressive, consuming the previously generated sym-
bols {y1,y2, . . . ,yt−1} as additional input when generating the next yt. This is the
reason why, at training time, the input to the decoder module is shifted right, and a start
token is prepended to the input target sequence. The iterative inference stops when
the end token is obtained in output from the decoder, exactly as in RNNs-powered text
generation schemes.

Notice how, during the decoding process, the decoder is conditioned, at each time
step, by all the memory vectors generated by the encoder. Also, since the Transformer
architecture is natively permutation invariant, the sequentiality of the input tokens is
recovered by performing the so-called positional encoding: every token is augmented
with a vector that univocally encodes its position inside the sequence. The beating heart
of the Transformer architecture — where the actual attention computation is performed
— is called multi-head attention.

2.3.1 Multi-Head Attention

The multi-head attention mechanism tries to weigh the vectors {x}S1 of the input se-
quence by computing their affinity with each of the vectors from a target sequence
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Figure 2.12: The Transformer architecture. Note how, for the translation task, the target sequence in
input to the decoder module is shifted right, and the model is initially fed with a start token. This
enables the model to be autoregressive (the first t − 1 target tokens are used during inference to
predict the t one).

{y}T1 . In sequence to sequence translation, the target sequence is the translated se-
quence, while the input sequence is the sequence to translate. However, this mechanism
is general enough to be applied to any two arbitrary sequences, and, pushing the archi-
tecture to the limit, to any two arbitrary sets of vectors, given that the architecture has
no hard-coded sequential priors as RNNs. In particular, three different vectors, called
queries, keys, and values, indicated as q,k,v ∈ Rd, are used to compute the attention.
The queries are extracted from the input sequence vectors, while values and keys are
extracted from the target one using linear projections, as follows:

qi = Wqxi i = 1, 2, . . . S (2.40)

kj = Wkyj j = 1, 2, . . . T (2.41)
vj = Wvyj j = 1, 2, . . . T. (2.42)

Notice that the weights of the projection matrices Wq, Wk, Wv do not depend on
the set indexes i or j, as these weights are shared among the elements of the sequences.
This is the core insight driving the permutation invariance prior of Transformers: thanks
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to this weight sharing constraint, the Transformer output sequence permutes as the input
sequence. The intuition behind the introduction of queries, keys, and values quantities
is that the attention works similarly to a dictionary-like memory [75]: a query from the
input sequence is used to match the more relevant keys from a pre-existing dictionary
— the target sequence — and the values present at the chosen memory locations are
aggregated and returned.

More formally, the attention-aware vector in output from the attention module is
computed for every input element as a weighted sum of the values, where the weight
assigned to each value is computed as a similarity score — the scaled dot-product —
between the query with the corresponding key:

Att(q,k,v) = softmax
(

q · k>√
dk

)
v, (2.43)

where the factor
√
dk is used to mitigate the vanishing gradient problem of the softmax

function in case the inner product assumes too large values.
The term multi-head refers to the fact that, in real implementations, the input vectors

are sliced in h equally-sized chunks. Every chunk is processed independently using h
different instantiations of the above-described mechanism, where h is the number of
attention heads. In other words, multiple instantiations of the attention mechanism act
on different slices of the input and target vectors. In the end, every single output is
concatenated to form the final output vector. The multi-head variation helps capture the
relationships between the different portions of every input vector, and empiric studies
in [220] confirm its effectiveness.

Many of the great achievements of the Transformer architecture — for example
Bidirectional Encoder Representations from Transformers (BERT) [58] — were ob-
tained using the encoder part of the Transformer solely. Following, we give the reader
a comprehensive overview of the important Transformer Encoder (TE) architecture.

2.3.2 The Transformer Encoder Architecture

The core mechanism behind the Transformer Encoder (TE) is called multi-head self-
attention, which is a specialized version of the multi-head attention mechanism de-
scribed earlier. Self-attention, differently from plain attention, uses the same sequence
both as input and target. The immediate consequence of this specialization is that
q,v,k are computed starting from the same input set. In this case, T = S, and the
scalar product q · k> ∈ RS×S is a square matrix encoding the affinity that each se-
quence element has with all the other elements of the same sequence.

The output from the TE is computed through a simple feed-forward layer applied
to the Att(q,k,v) vectors, with a ReLU activation function. This simple feed-forward
layer casts in output a set of features with the same dimensionality of the input se-
quence. Two residual connections followed by layer normalization are also present
around the self-attention and the feed-forward sub-modules. An overview of the Trans-
former Encoder architecture is shown in Figure 2.13. Given that the input and output
interfaces of the TE match, multiple TEs can be stacked together to capture relation-
ships between elements of the sequence at different levels of abstractions.

Although the TE was initially developed to work on sequences, there are no archi-
tectural constraints that prevent its usage on sets of vectors instead of sequences. In
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Figure 2.13: A high-level view of the Transformer Encoder layer. Every arrow carries s fixed-sized
vectors.

fact, the TE module has no built-in sequential priors that consider every vector in a
precise position in the sequence, thanks to the permutation invariance property of the
multi-head self-attention mechanism.

2.3.3 Bidirectional Encoder Representations from Transformers (BERT)

Bidirectional Encoder Representations from Transformers (BERT) [58] is an architec-
ture exploiting the power of Transformer Encoders to understand and process natural
language texts. BERT is a powerful language model that is pre-trained on a number
of challenging language problems; the pre-trained model can then be finetuned on a
specific downstream task.

BERT is pre-trained on problems that ensure a general understanding of the depen-
dencies between words in a sentence or between the sentences in a paragraph; thus, this
model becomes a good language prior that can be further refined during the finetuning
phase. In particular, BERT is trained on the Masked Language Modelling (Masked LM)
and the Next Sentence Prediction (NSP) tasks. In MLM, some specific tokens from the
input sequence are masked out, and the model is asked to predict them. Unlike other
unsupervised methods like denoising auto-encoders [224], this approach only predicts
the masked words rather than reconstructing the entire input. On the other side, the
NSP task consists in predicting if two input sentences are consecutive or not, and it is
therefore framed as a binary classification problem.

To solve these tasks, the TE is arranged as shown in Figure 2.14. The two sequences
for NSP are both given as input to the Transformer Encoder. A special [SEP] token is
inserted between them to signal the end of the first and the beginning of the second, and
a start-of-sequence token, called [CLS], is added to the head of the first sequence.

The NSP head — a binary classification head — is constructed on top of the output
[CLS] token, which is therefore used to collect global information from the two sen-
tences. On the other hand, many MLM heads are attached to the masked output tokens,
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Figure 2.14: The BERT architecture. NSP stands for Next Sentence Prediction, and Masked LM stands
for Masked Language Modelling, and they refer to the meta-tasks on which BERT is pre-trained.

and they are optimized on a standard token prediction problem.
With these simple yet effective pre-training schemes, BERT is able to outperform

other language models like ELMo [177] and GPT [190] pre-trained on the same data
corpus, on many downstream tasks such as textual similarity prediction, sentiment anal-
ysis, and question answering [226, 192].

2.3.4 Vision Transformers

Given the massive engagement of the Transformer architecture in the NLP community,
these models have recently acquired much interest also in Computer Vision.

Transformers, and in particular Transformer Encoders, are able to process sets of
input vectors that do not necessarily come from textual sequences. In fact, it is possible
to subdivide images into several patches, which can be fed as input to a TE for further
processing. The self-attentive mechanism of TEs can discover long-range dependencies
between image patches, overcoming the limits of the local-processing performed by
CNNs. The patches are usually extracted either by subdividing the image with a regular
grid or by running an object detector like Faster-RCNN [198] to find the most salient
regions (Figure 2.15).

On these simple concepts, many different architectures have been proposed. Some
of these, like Cross Transformers [60] or DETR [39] use the regular grid of features
from the last feature map of a CNN as visual tokens. Particularly, DETR uses the
entire Transformer pipeline to approach the object detection problem, reaching com-
parable results with fully-convolutional architectures [195, 198]. More recently, fully-
Transformer architectures, first among which the Vision Transformer (ViT) [61], have
taken root. For the first time, no convolutions are used to process the input image. In
particular, the ViT architecture divides the image in patches using the grid approach;
the RGB pixel values from every patch are concatenated, and they are linearly projected
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Figure 2.15: The two approaches for obtaining visual tokens from an image. Every visual token is
transformed into a vector, and the resulting set of vectors is fed to the Transformer Encoder network.

to a lower-dimensional space to be used as visual tokens. The BERT-like [CLS] token
is then used as the classification head. On the same wave of ViT, the TimeSformer
[33] redefined attention both in space and time to understand long-range space-time
dependencies in videos.

Vision Transformers recently outperformed ResNets and ResNeXts on image clas-
sification on ImageNet. Nevertheless, the major downside of ViTs is the large amount
of data needed to train them. In fact, differently from CNNs, ViTs lack the induc-
tive biases deriving by the local spatial processing of the convolution operation. ViTs,
with their global self-attention mechanism, must learn the important inductive biases
directly from data. For this reason, there is particular interest in mixing CNNs with
Transformers for creating effective hybrid architectures [53, 78]. An example is the
recently-released CoAtNet [52], the current state-of-the-art architecture for image clas-
sification on Imagenet, reaching a Top-1 accuracy of 90.88%.

2.3.5 Multi-modal Transformers

A multitude of methods has been recently proposed to pre-train Transformer Encoder
architectures on visual-textual tasks. In fact, in the last years, multi-modal Deep Learn-
ing acquired a fundamental role, and there was an increasing need for models able to
process visuals and natural language texts jointly. Given the vast amount of visual-
textual tasks, the research focused on ways to pre-train visual-language models that
can be further specialized on a specific downstream task during the finetuning phase.

Most of the proposed architectures follow the same wave of BERT [58], with the
additional consideration that, as in Vision Transformers [61], image patches can also be
treated as tokens, as much as words. First among all, the ViLBERT architecture [145]
proposed a two-stream visual and textual pipeline able to jointly reason on the two
modalities using co-attentional Transformer layers. Concurrently, VisualBERT [127]
proposed an architecture much more in line in spirit with BERT: a Transformer Encoder
is fed with both textual and visual tokens, and the output CLS and SEP tokens are used
as heads for the downstream tasks, such as Visual Question Answering (VQA) or Visual
Commonsense Reasoning (VCR). However, differently from BERT, VisualBERT is not
pre-trained on unsupervised tasks such as Masked LM. Pre-training on this task would
help such models to acquire a global a-priori knowledge of both visual and textual
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Figure 2.16: The blueprint of multi-modal BERT-like architectures for jointly processing images and
texts. ILM stands for Image Text Matching, while MOC and MRFR stand for Masked Object Classifi-
cation and Masked Region Feature Regression, respectively, and they refer to some of the meta-tasks
on which these architectures are usually pre-trained.

worlds.
To this end, a new generation of multi-modal Transformers — ImageBERT [184],

PixelBERT [91], VL-BERT [215], and OSCAR [131] — extended the Masked LM
pre-training objective also to the visual world. In particular, ImageBERT introduced
Masked Object Classification (MOC), where the goal is to infer the correct label for the
masked image region, and Masked Region Feature Regression (MRFR), which consists
in regressing the visual feature of the masked image region to the ground-truth region
vector — the one produced by the object detector. The underlying blueprint for the
architectures listed above is shown in Figure 2.16.

Similarly to BERT, these architectures can spot hidden semantic links between to-
kens, thanks to the power of the self-attention mechanism. For this reason, it is possible
to visualize the internal multi-modal learned attentions to understand the fine-grained
alignments between image regions and words. In particular, the various Transformer
Encoder layers and heads capture relationships at different abstraction levels, creating
a powerful relational model. An example of attention visualization is shown in Fig-
ure 2.17. All the presented methods use Faster-RCNN to detect objects and use the
ROI-pooled features in output from the first stage of the detector as visual tokens. They
are pre-trained on many datasets, mainly Conceptual Captions [210], which contains
3M images with descriptions harvested from the Alt-text HTML attribute of the web
pages, and SBU Captions [171], which consists of 1M images with user-associated
captions.

Many of these multi-modal Transformer architectures are pre-trained also on the
noteworthy Image Language Matching (ILM) task. The objective of ILM is to decide if
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Figure 2.17: An example of attention visualization from VL-BERT. Image by Su et al. [215].

the image and the text in input are related or not. The problem is usually faced as a bi-
nary classification task, which returns the matching likelihood during inference. In this
dissertation, the ILM task covers an important role in Chapter 4, where we discuss ef-
ficient image-text matching. Although these architectures are very effective and able to
produce astonishing semantic groundings, they cannot produce a meaningful common
space where efficient and scalable K-nearest neighbors search can be performed.

2.4 Content-Based Multimedia Information Retrieval

In this section, we review some of the key concepts related to multimedia content re-
trieval, which are of high relevance in Chapter 3 and Chapter 4.

From a broad perspective, Multimedia Information Retrieval is a wide area of com-
puter science involved in the research and development of methods for effectively and
efficiently searching the huge variety of media available in different kinds of reposi-
tories — digital libraries, social networks, multimedia databases. Given the massive
amount of multimedia content uploaded every day to the web, it is essential to develop
systems able to organize all these data to be easily retrieved. Albeit there are today
many different paradigms for making the human-machine interface during the search
phase as simple as possible, the core idea in Multimedia Information Retrieval remains
unchanged: given a user-provided query, we are requested to retrieve the most relevant
items available in a given collection (or database). Historically, the first large-scale
retrieval systems were built for searching textual documents only; for this reason, in
the early days of information retrieval, databases contained only textual files, usually
referred to as documents. Today, the possibility of having large collections of images,
videos, and audio besides text significantly extended the limits and areas of compe-
tence of Information Retrieval, giving rise to Multimedia Information Retrieval. In a
multimedia database, queries and items usually pertain to different modalities, mean-
ing that the query is expressed in a modality different from that of the retrieved items.
This scenario is also called cross-modal retrieval, and some examples are text-to-image,
image-to-text, text-to-video. This paradigm extends the famous query-by-example one,
in which the user provides a query with the same modality of the items to be retrieved.
In this scenario, we find Content-based Image Retrieval (CBIR), where both queries
and retrieved items are images.

Early multimedia retrieval systems employed metadata associated with the items of
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Figure 2.18: The schema behind any retrieval system. Notice that items and queries are not constrained
to have the same modality.

a collection to perform indexing — human annotations, surrounding text in web docu-
ments, or descriptions. Metadata either enables the use of standard relational databases
or is composed of unstructured text, which is fairly more manageable than the content
itself (e.g., an image). However, metadata is hard to collect, and they are often ab-
sent, incorrect, or misleading. For this reason, the research attention moved towards
content-based retrieval, which exploits the high-level concepts hidden in the media to
automatically index huge collections of data without relying on metadata.

In order to be manageable, the raw media content is usually transformed into some
vectorial representation which enables similarity search using text-based approaches
[2, 6, 40], or the formalism of metric spaces [251]. The schema representing the search
system is shown in Figure 2.18. During the offline phase, the vectorial representations
are computed for each element of the collection through the item representation module
and stored in an index. The online phase begins whenever a user issues a query to
the system; in this case, the query representation is asked to produce the vectorial
description of the query, while the scoring module computes the similarities between
the query representation and the ones stored in the index. Finally, the ranking module
orders the results by decreasing scores.

The most critical elements in the schema are the item representation and query rep-
resentation modules, also called generically feature extraction modules. They are re-
sponsible for creating suitable and rich vectorial representations for the media, and
therefore have an high impact on the system effectiveness. Understanding all the differ-
ent layers hidden in a media object and condensing all the information inside a single
vectorial description is anything but simple. For example, we could be interested in
catching low level details in an image — e.g., the style or the distributions of colors
of a painting — or we can instead consider high level features, such as the abstract
relationships between the actors in a picture — e.g., a dog which is running in the
garden, towards his master. This limitation of the employed content descriptors to rep-
resent high-level concepts is usually known as semantic gap [54]. Although it has been
widely studied for CBIR [22], it is especially critical in cross-modal search engines. In
fact, different modalities can be compared only at a higher abstraction level, given that
they do not share the same low-level structure.
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2.4.1 Feature Extraction

Before the advent of Deep Learning, feature extraction methods for images relied on
low-level local descriptors such as SIFT [143], SURF [24], and used handcrafted ag-
gregation methods such as VLAD [96] or Fisher Vectors [176].

Today, thanks to the unprecedented ability of Deep Neural Network to create high-
level representations of the input contents, the item representation and query repre-
sentation modules of Figure 2.18 are implemented by ad-hoc trained DNNs. In this
dissertation, we pay particular attention to the features extraction modules for Rela-
tional Content-based Image Retrieval in Chapter 3 and cross-media retrieval in Chap-
ter 4, with the intention of reducing the semantic gap. In literature, the approaches for
producing suitable features from DNNs can be roughly divided into two main strands:
transfer learning and metric learning, better detailed in the following paragraphs.

Transfer Learning In this scenario, features for retrieval are extracted from an architec-
ture originally trained for a different task. In CBIR, for example, it is fairly common
to extract visual features from methods trained on image classification. In particular,
many works [209, 15, 225] used the activations from the last fully-connected layers
of CNN classifiers trained on large image classification datasets like ImageNet. Since
fully-connected features struggle to capture localized details in images, many works
tried to directly employ the feature maps in output from the last convolutional layer by
spatially pooling them using sum or max-pooling [13, 194, 14]. In this context, the Re-
gional Maximum Activations of Convolutions (R-MAC) [219] proposes a very efficient
method for pooling convolutional features at different scales to improve the overall re-
trieval effectiveness. Similar transfer learning methodologies have been applied in the
context of text retrieval — by using the representations of sentences [58] or individual
words [166, 173] learned in weakly supervised scenarios — as well as in content-based
audio retrieval [183].

Metric Learning Distance metric learning (or simply metric learning) aims at automat-
ically constructing task-specific distance metrics from (weakly) supervised data in a
machine learning manner [26]. The key idea of distance metric learning is to learn
an optimal metric that minimizes the distance between similar items and simultane-
ously maximizes the distance between dissimilar ones. In DL, this objective has been
successfully achieved through the triplet-based loss functions already introduced in
Section 2.1.4. In many cases, this objective is not directly used to learn a paramet-
ric distance function (e.g., Mahalanobis distance); instead, the metric is fixed (e.g.,
L2-distance), and the network is asked to produce vectorial representations able to sat-
isfy the triplet constraint with the provided metric. The metric learning objective can
be easily confused with a classification objective. Nevertheless, cross-entropy only en-
sures that the features are linearly separable in some high-dimensional space. Triplet
loss, instead — similarly to other ad-hoc designed objectives such as center loss [234]
— also learns discriminative features, ensuring intra-class compactness, and giving a
meaning to the concept of nearest neighbor (Figure 2.19). In the field of computer
vision, this learning technique showed its effectiveness in siamese networks [153] and
triplet networks [227] for tasks like face verification, image matching and retrieval,
and one-shot classification. In particular, metric learning using siamese or triplet loss
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Figure 2.19: Separable features vs. discriminarive features. Figures by Wen et al. [234].

was largely used recently to improve CBIR features. In particular, the basic R-MAC
pooling scheme was extended in [74] with a triplet loss to learn more discriminative
features for instance retrieval. More recently, using a similar learning framework, the
Generalized Mean (GeM) features [189, 199] obtained state-of-the-art results on this
task. Recent works use triplet loss objectives to project items having different modali-
ties (e.g., images and texts) to the same common space, in which K-nearest neighbors
search can be efficiently performed [65, 125]. This kind of architecture is largely used
to learn representations independent from the source modality. Therefore, this is the
core mechanism behind cross-modal search engines and, in particular, behind semantic
retrieval.

2.4.2 Evaluation Metrics

In this section, we briefly review the most commonly-used metrics to evaluate the ef-
fectiveness of retrieval systems.

First of all, it is worth introducing some useful notation. Given a data collection
X, we define Rq ⊂ X the set of items retrieved by the system for a given query q, and
R?
q ⊆ X the actual relevant set of documents for the same query (i.e., the ground-truth).

Many of the presented metrics are also used in the evaluation of binary classifiers, given
that they deal with binary relevance as well. Some examples are the evaluation of object
detectors — in which a detection either is or is not correct — or the multi-label binary
classification, an example of which is the social network persuasion detector presented
in Chapter 4. In information retrieval, binary relevance arises since usually a document
either is or is not relevant to the provided query.

Precision and Recall The precision is the fraction of retrieved documents that are rele-
vant to the query q:

Precision =
|Rq| ∩ |R?

q|
|Rq|

, (2.44)

where we indicate with | · | the set cardinality. Differently, the recall is the fraction of
relevant documents that are actually retrieved by the system:

Recall =
|Rq| ∩ |R?

q|
|R?

q|
. (2.45)
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Figure 2.20: An example of precision-recall curve, showing the precision of the retrieval at given recall
values.

Usually, the elements in the Rq are chosen by applying a threshold on the relevance
score provided by the system for each retrieved item. If the threshold is increased, it is
less probable that a retrieved item is classified as relevant; for this reason, by gradually
increasing the threshold, the precision increases while the recall decreases. Vice-versa,
if the threshold is decreased, the precision decreases — there is a higher probability of
false positives in the retrieved set — and the recall increases. Obviously, if Rq = X, the
recall is 1 since we certainly retrieved all the relevant documents; nevertheless, in this
case, the precision is very low as we also retrieved all the non-relevant items. Precision
and recall are both 1 only when Rq = R?

q . The trend of precision and recall are usually
reported in the so-called precision-recall curve, an example of which is reported in
Figure 2.20.

Mean Average Precision (mAP) Although the precision-recall curve provides a lot of use-
ful information, it is usually difficult to use to compare different systems. For this
reason, AP summarizes the precision-recall curve in a single value that provides a
quantitative measure for the global effectiveness of the system. Formally, the Aver-
age Precision is defined as follows:

AP =
∑

r

Precision(r), (2.46)

where the index r spans the different values for the recall, and Precision(r) is the preci-
sion computed at recall r. In other words, the AP is a measure approximating the area
under the precision-recall curve. Usually, a system is evaluated on multiple queries,
and the mean Average Precision (mAP) is simply the AP averaged over the different
queries.

F-measure Similarly to mAP, the F-measure provides a single-value characterizing the
retrieval effectiveness. The F-measure is defined as the weighted harmonic mean of
precision and recall:

F =
1

α 1
P

+ (1− α) 1
R

=
(β2 + 1)PR

β2P +R
where β2 =

1− α
α

, (2.47)
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where P is precision, R is recall, α ∈ [0, 1], and thus β ∈ [0, inf]. The balanced
version of the F-measure is obtained when precision and recall are equally weighted.
This happens when α = 1/2, or equivalently, when β = 1. For this reason, the most
common version of the F-measure is known as F1, which is short for Fβ=1. When
β = 1, the formula simplifies to:

F1 = Fβ=1 =
2PR

P +R
(2.48)

The F1-score gives values in the interval [0, 1]; hence it is often a good way of sum-
marizing the performance of binary classifiers. The harmonic mean between precision
and recall usually gives fair results over the simple arithmetic mean: if we return all
the documents (recall = 1), the arithmetic mean returns 0.5, which seems very unfair.
When the values of two numbers differ greatly, the harmonic mean is instead closer to
their minimum than to their arithmetic mean. Therefore it better correlates with user
satisfaction.

Recall at K In the literature related to this dissertation, the Recall@K (R@K) is, un-
fortunately, an overloaded metric: it is defined in two different ways depending on
the specific research context in which it is used. In the broad context of information
retrieval, the Recall@K is defined as the recall metric defined above, but only consid-
ering the top-K results. Therefore, R@K measures how many correct results there are
within the first K returned elements. Formally, it is defined as:

R@K =
|Rq,:k| ∩ |R?

q,:k|
K

, (2.49)

where we indicate as Rq,:k and R?
q,:k the top-K retrieved elements and the top-K ground-

truth elements, respectively. Differently, in metric learning, and, more specifically, in
papers concerning cross-modal retrieval, the Recall@K is defined as the percentage
of queries that retrieve at least one correct result within the top-K items. This latter
definition will be extensively used for evaluating cross-modal retrieval architectures in
Chapter 4, where usually only one item is relevant for every given query.

Spearman’s ρ The Spearman’s rank correlation coefficient, also known as Spearman’s
ρ, is a statistical measure of the correlation between two rankings. In information
retrieval, it can be therefore used to quantify the affinity between the rankings obtained
from the retrieved items and the ground-truth rankings. Mathematically, it is defined as
the Pearson correlation coefficient between the rank variables [167]:

ρ =
cov(rg(Rq), rg(R?

q))

σrg(Rq)σrg(R?
q)

, (2.50)

where rg(·) returns the rankings, and σ is the standard deviation.
Given n samples, if all the n ranks are distinct integers, the Spearman’s ρ can be

computed using the formula

ρ = 1− 6
∑

i d
2
i

n(n2 − 1)
, (2.51)

where di = rg(Rq,i) − rg(R?
q,i) is the difference between each pair of ranks taken

respectively from the result set and from the ground-truth.
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Discounted Cumulative Gain (DCG) Unlike the previous metrics, the Discounted Cumu-
lative Gain (DCG) employs the score returned by the system, walking out of the binary
relevance framework used so far. In DCG, every item is associated a relevance; the
top-K results are considered, and their relevance is cumulated. However, the relevance
for each item is penalized logarithmically with respect to its rank in the returned list:

DCGK =
K∑

i=1

2reli − 1

log2(i+ 1)
. (2.52)

The relevance at the exponent places a stronger emphasis on retrieving relevant doc-
uments, although other variants weigh it linearly. The values assumed by DCGK are
heavily influenced by the particular value of K used. Usually, to minimize this prob-
lem, the normalized version of the DCG, called Normalized Discounted Cumulative
Gain (NDCG), is employed instead:

NDCGK =
DCGK

IDCGK

, (2.53)

where IDCGK is the best possible ranking, so that the resulting NDCGK has values in
the range [0, 1].

2.5 Datasets

In this section, we briefly describe the datasets which are relevant — either directly or
indirectly — for this thesis.

CLEVR Compositional Language and Elementary Visual Reasoning (CLEVR) [104]
is a synthetic dataset composed of 3-D rendered scenes, and it is specifically designed
to challenge DNNs on the Relational Visual Question Answering (R-VQA) task. There
are 100k rendered images subdivided among training (70k), validation (15k), and test
(15k) sets. The total number of questions is 865k, again split among training (700k),
validation (150k), and test (15k). The acronym CLEVR was forged from assonance
with a bizarre character who lived in the early 1900s, a horse named Hans Clever. It
was said that Hans was capable of performing simple arithmetic operations. Care-
ful observation revealed that Hans correctly answered questions by simply reacting to
invisible body cues from the people assisting his shows. This anecdote explains quite
well the main goals of the CLEVR dataset: (a) trying to understand how an architecture
internally pursues the reasoning process and (b) avoiding data biases so that architec-
tures have no chance to behave like Hans. In order to reach such objectives, CLEVR has
been designed meticulously. The main concept behind this dataset is the scene. A scene
contains different simple-shaped objects with mixtures of colors, materials, and sizes.
There are cubes, spheres, cylinders, each one of which can have a color chosen among
eight; they can be big or small, and they can be made of one of two different materials,
metal or rubber. The scene is fully and uniquely described by a scene graph. The scene
graph describes in a formal way all the relationships between objects. The question is
formulated under the form of a functional program, which is a declarative formulation
where elementary functions such as count(), exists(), filter_size() are
connected to form a query. These basic functions potentially take as input attributes,
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Figure 2.21: Example of CLEVR image with the associated question: "Are there fewer metallic objects
that are on the left side of the large cube than cylinders to the left of the giant shiny block?". Expected
answer: "Yes".

Figure 2.22: Example of Sort-of-CLEVR image with the associated question: "What is the shape of the
object that is farthest from the gray object?". Expected answer: "The yellow square"

.

e.g.: filter_size(small). The question is therefore described in the form of a
graph. The answer to a question represented by its functional program on a scene is
simply calculated by executing the functional program on the scene graph. There are
28 different possible answers, ranging from binary responses (yes or no) to quantities
(whole numbers in the range {0 . . . 9}). Scene graphs are rendered to photo-realistic 3-
D scenes using Blender, a free 3-D software; instead, functional programs are converted
to natural language expressions compiling some templates embedded in the dataset and
written in English. A sample image from this dataset is shown in Figure 2.21.

Sort-of-CLEVR Sort-of-CLEVR consists of a simplification of the original CLEVR
dataset. It is created mainly for testing and debugging architectures that are designed
to work with CLEVR. Images are simpler than 3-D renders provided with the original
dataset; they instead carry simple 2-D scenes, consisting of a certain number of shapes.
Shapes can be circles or squares and come in different colors. Every object, however,
is uniquely identified by its color. Differently from the CLEVR dataset, this one splits
the questions into two different subsets:

• relational questions, asking for the color or shape of the farthest or the nearest
object with respect to the given one. Example: "What is the shape of the object
that is farthest from the gray object?";

• non-relational questions, involving specific attributes that characterize a single
object, in particular the shape or the absolute position of the object with respect to
the overall scene. Example: "What is the shape of the gray object?".

Questions are directly encoded into 11-dimensional state vectors, so there is no need
for LSTM modules processing natural language. Although this dataset seems extremely
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Figure 2.23: Positive and negative examples from four different SVRT visual problems.

simple, it can help spot some architectural problems that inhibit the network from think-
ing relationally. A sample image from this dataset is shown in Figure 2.22.

SVRT The Synthetic Visual Reasoning Test (SVRT) dataset [67] is an extensive bench-
mark designed to test some abstract reasoning capabilities of machine learning algo-
rithms. It is in principle very similar to Sort-of-CLEVR, although it is designed to
diagnose very specific relational shortcomings of Computer Vision algorithms. This
dataset is comprised of 128 × 128 images containing simple black closed curves on a
white background, and it is organized as a collection of 23 different visual problems.
Every visual problem in SVRT is divided into two classes: the set of positive examples,
which are the images that satisfy a specific rule, and the set of negative examples which
do not satisfy the rule. The SVRT dataset is designed so that the two categories can be
perfectly separated once the underlying rule is understood. In Figure 2.23 are shown
positive and negative examples from different visual problems. The highly-irregular
closed contours make the number of possible combinations huge, and brute-force mem-
orization of those already seen serves no purpose. For this reason, although SVRT is
comprised of images that grossly oversimplify the natural world, this dataset is also
free of biases that can be employed to guess the correct class.

MS-COCO The MS-COCO dataset [134] comprises images harvested from the web
and containing contextual relationships and noniconic object views. It comes with a
total of about 123k images, and it contains 91 common object categories, with 82 of
them having more than 5k labeled instances. Unlike the popular ImageNet dataset
[56], MS-COCO has fewer categories but more instances per category. Every image
has associated a set of 5 human-written captions describing the image so that it can be
used for image-text matching and captioning tasks. Usually, in image-text matching
literature, the splits introduced in [109] are commonly used. According to these splits,
113k images are reserved for training, 5k for validation, and 5k for testing.

Crisscrossed Captions The Crisscrossed Captions (CxC) dataset extends the develop-
ment and test splits of MS-COCO with semantic similarity ratings for image-text, text-
text and image-image pairs. The rating criteria are based on Semantic Textual Simi-
larity, an existing and widely-adopted measure of semantic relatedness between pairs
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of short texts. For semantic similarity, they mixed Universal Sentence Encoder(USE)
[42] and Bag-of-Words (BoW) with Glove embeddings [173] on the image captions for
obtaining sentence similarity, and they extended it to include judgments about images
as well. Overall, CxC contains human-derived semantic similarity ratings for around
267k pairs, derived from more than 1 million independent judgments. The scores range
from 0 (completely irrelevant) to 5 (fully relevant). For the evaluation, they proposed to
use the Recall@k metric, following the literature on text-to-image or image-to-text on
the MS-COCO dataset [65, 125]. They set the threshold for the various tasks by empir-
ically looking at the distribution of the scores. This dataset constitutes a milestone for
evaluating image retrieval — and Semantic Content-based Image Retrieval (S-CBIR)
in particular, explored in Chapter 4 — as well as for obtaining human-level judgments
during the evaluation of cross-modal retrieval methods.

Flickr30k Flickr30k is often used as an alternative to MS-COCO. Flickr30k consists
of 31k images and 158k English texts, harvested from the Flickr website 1. The tex-
tual captions are cleaned up to avoid spelling mistakes, eliminate ungrammatical or
non-descriptive sentences. Like MS-COCO, each image is annotated with five cap-
tions. Following the splits by [109], 29k images are used for training, 1k images for
validation, and the remaining 1k images for testing.

Visual Genome Similar to MS-COCO and Flickr30k datasets, Visual Genome [116] is
an extensive collection of images scraped from the web and manually annotated. Visual
Genome accompanies every image with very precise annotations: it carries bounding
boxes for every relevant visual element, together with the class, and a graph describing
the inter-dependencies between the actors in the image. For this reason, it can also
be used as a vast and rich semantic knowledge base. More in detail, it is comprised of
about 108k images, 40k unique attributes, and 40k unique relationships. It also provides
five question-answer pairs for each image so that it can also be used to solve real-world
Visual Question Answering (VQA) tasks. In this sense, Visual Genome is in spirit very
similar to CLEVR, although it is defined on real-world pictures and challenges DNNs
to understand real-world situations. It is widely employed to pre-train object detectors
or for training architectures on the task of Visual Relationship Detection (VRD). In
particular, the bottom-up visual features [10] used in many visual downstream tasks
are extracted using a Faster-RCNN model trained on bounding boxes, attributes, and
relationships from the Visual Genome dataset. This pre-trained model acquired strong
visual relational priors, and it is therefore suitable for use in VQA, image-text matching,
or captioning architectures.

1https://www.flickr.com/
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CHAPTER3
Relational Content-Based Image Retrieval

Recent advances in Deep Learning technologies brought to light the remarkable poten-
tial of Deep Neural Networks. In particular, focusing on the computer vision world,
one of the aims of Deep Learning architectures consists in understanding the content
of an image at a high level of abstraction. In this respect, some specific tasks have
been defined to test the capabilities of newly proposed architectures to cope with high-
level reasoning. Understanding relationships between entities is considered a difficult
task since it requires complex and non-local reasoning skills. For this reason, some
challenging tasks such as Relational Visual Question Answering (R-VQA) and Visual
Relationship Detection (VRD) have been introduced as reference tasks for probing the
relational abilities of Deep Learning solutions. R-VQA consists of answering ques-
tions related to difficult inter-object relationships in an image; on the other hand, VRD
tries to recover relationships between couples of objects in the images by coding the
information under the form of triplets subject, predicate, object. R-VQA and VRD un-
derlined some of the difficulties that current deep-learning approaches present when it
comes to reasoning about relationships between different objects: plain convolutional
architectures showed incredible results in tasks such as image classification or object
recognition; however, they exhibit some limitations in relational contexts.

In this chapter, we analyze the possibility of applying relational understanding ca-
pabilities to the CBIR task. In standard CBIR, the relevance score between two images
is determined by focusing solely on a single element, such as an animal, a person, or a
famous building. Here, instead, we are interested in a novel sub-field of CBIR, called
Relational Content-based Image Retrieval (R-CBIR), in which we care not only about
elements in themselves but also about the relationships linking them together. In other
words, R-CBIR aims to retrieve images with given relationships among objects. This
study is focused on bringing image retrieval a step further with respect to current ap-
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What is the color of the 
car stopped at the 
intersection?

Figure 3.1: Difference between the visual feature extracted using a pre-trained image classification
network (top) and the visual feature extracted using an architecture trained on R-VQA (bottom).
In the latter case, the visual feature must embed some relational information that can produce the
correct answer when merged with the textual question.

proaches, keeping the basic idea untouched. In fact, the similarity between two images
is always measured as the affinity among some high-level features extracted from the
image. In this context, our objective consists of extracting a relationship-aware de-
scriptor able to embed relational information; this novel relational descriptor is easily
comparable using standard distance metrics to be used in standard indexing engines.

This chapter investigates the possibility of learning features from networks trained
on the task of R-VQA. The transfer-learning methodology is not a novel approach for
CBIR, as pointed out in Section 2.4.1. In this scenario, features are often extracted
from architectures trained, for example, on image classification tasks. Image classifi-
cation, however, does not require the architecture to learn difficult relational concepts.
Hence, as far as R-CBIR is concerned, relationship-aware features can be extracted
from architectures trained on a task that requires high-level reasoning capabilities, and
the R-VQA task perfectly fills this need. In other words, we rely on the assumption
that architectures that can correctly answer questions on complex inter-object relation-
ships have internally learned some relational concepts that can be later extracted and
compared. A simple schematic of the feature extraction pipeline in both these cases is
shown in Figure 3.1.

We perform this study in a fully controlled environment, using the images and scene
graphs provided by the CLEVR and Sort-of-CLEVR synthetic datasets introduced in
Section 2.5. Being highly controlled environments, these datasets are valuable to test
in fine detail the relational shortcomings of DNNs.

The chapter is organized as follows. In Section 3.1, we review some of the works
belonging to the relational learning world. In Section 3.2, we describe in detail the
models proposed to extract features suitable for the R-CBIR task. Given that we need
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an appropriate benchmark for evaluating the retrieval abilities of the extracted features,
in Section 3.3 we describe in detail the creation of the relational ground-truth, obtained
by extending the CLEVR dataset. In Section 3.4, we describe our experimental setup,
we collect the results, and we discuss the obtained results, also considering baseline
architectures present in the literature. Finally, in Section 3.5, we recap our contribution.

This chapter collects the research published in the following papers:

• Learning Relationship-aware Visual Features. Proceedings of the European Con-
ference on Computer Vision Workshops. 2018. [156];

• Re-implementing and Extending Relation Network for R-CBIR. Italian Research
Conference on Digital Libraries. 2020. [159];

• Learning Visual Features for Relational CBIR. International Journal of Multime-
dia Information Retrieval. 2020. [158].

3.1 Understanding Relations in Images

In this section, we review some of the works related to relational learning in particular
related to Relational Visual Question Answering (R-VQA) and Visual Relationship
Detection (VRD) tasks. Afterward, we review some of the existing approaches that
strongly relate to the novel Relational Content-based Image Retrieval (R-CBIR) task.

Visual Relationship Detection (VRD) Recent work has addressed the problem of VRD in
images in the form of triplets (subject, predicate, object), where subject and object are
common objects present in an image, and predicate indicates a relationship between
them out of a set of possible relationships containing verbs, prepositions, compara-
tives, etc. Several datasets comprised of a large set of visual relationships, such as the
ones introduced in [116, 144, 178], opened the way to approaches aimed to detect inter-
object relationships in images [144, 178, 51]. A common approach to VRD employed
by many [144, 242, 185, 247] consists at first in proposing entities using region pro-
posal networks, such as Faster-RCNN [198]. Then, once the entities have been located,
a network tries to reason on the relationships occurring between them. Notwithstand-
ing approaches that solve VRD are able to detect relationships, they usually do not
encode the learned information in a compact representation: all possible relationships
are combinatorially tested on prediction time.

Relational Visual Question Answering (R-VQA) R-VQA comes from the basic task of Vi-
sual Question Answering (VQA). Plain VQA consists in giving the correct answer
to a question asked on a given picture, so it requires connecting together different
entities coming from heterogeneous representations (text and visuals). Some works
[256, 245] proposed approaches to standard VQA problems on datasets such as VQA
[12], DAQUAR [150], COCO-QA [196]. Recently, there is a tendency to conceptually
separate VQA and R-VQA. In R-VQA, in fact, images contain difficult inter-object
relationships, and question are formulated in a way that it is impossible for deep archi-
tectures to answer correctly without having understood high-level interactions between
the objects in the same image. Some datasets, such as CLEVR [104], RVQA [146],
FigureQA [107], move the attention towards this new challenging task. On the CLEVR
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dataset, the authors in [205] and [193] proposed a novel architecture specialized to think
in a relational way. They introduced a particular layer called Relation Network (RN),
which is specialized in comparing pairs of objects. Objects representations are learned
by means of a four-layer CNN, and the question embedding is generated through an
LSTM. The overall architecture, composed of CNN, LSTM, and the RN, can be trained
fully end-to-end, and it is able to reach superhuman performances. Other solutions
[85, 106] introduce compositional approaches able to explicitly model the reasoning
process by dynamically building a reasoning graph that states which operations must
be carried out and in which order to obtain the right answer. These architectures are in-
ternally split into two different sub-components: a generator network that produces an
execution graph based on the question embeddings, and an execution network that ex-
ecutes the graph produced by the generator network taking in input the image features
and outputting the answer. In order to close the performance gap between interpretable
architectures and high performing solutions, [152] proposed a set of visual-reasoning
primitives that are able to perform complex reasoning tasks in an explicitly interpretable
manner.

R-CBIR While standard CBIR captured a lot of attention even before the deep-learning
era, R-CBIR involves complex reasoning skills and current deep-learning approaches
have shown promising results in this direction. We take as reference the work by [219]
that introduced R-MAC features — one of the state-of-the-art non-relational image
descriptors for image instance retrieval. This descriptor encodes and aggregates several
regions of the image in a dense and compact global image representation exploiting
a pre-trained fully convolutional network for feature map extraction. The aggregated
descriptor is obtained by max-pooling the feature map over different regions and scales
and summing them together. Concerning the work carried out on R-CBIR, there was
some experimentation using both CLEVR and real-world datasets. The work in [102]
introduced a CRF model able to ground relationships given in the form of a scene graph
to test images for image retrieval purposes. However, this model is not able to produce
a compact feature. They employed a simple dataset composed of 5000 images and
annotated with objects and their relationships. More recently, using the Visual Genome
dataset, the authors in [254] implemented a large-scale image retrieval system able to
map textual triplets into visual ones (object-subject-relation inferred from the image)
projecting them into a common space learned through a modified version of triplet-loss.
The work in [25] exploits the graph data associated with every image in order to obtain
ranking goodness metrics, such as Normalized Discounted Cumulative Gain (NDCG).
Their objective was evaluating the quality of the ranking produced for a given query,
keeping into consideration the relational content of every scene.

3.2 Features Extraction Architectures

In order to extract relationship-aware visual features, we build upon a state-of-the-art
architecture designed for R-VQA on the CLEVR dataset, the Relation Network (RN)
architecture [205] introduced in Section 2.2.3. The RN takes an image and a natural
language question and handles the R-VQA task as a classification problem, outputting
the probabilities over the 28 possible answers. In our setup, the R-VQA is only a
proxy task with which the architecture is trained. During inference, only the visual
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pipeline is forwarded to obtain the visual relational descriptors. However, extracting
visual features from the plain RN architecture is not a trivial operation, as visual fea-
tures should be extracted before the question conditioning. This is not directly possible
in the original model, as question features are early fused with the ones from the visual
pipeline. For this reason, we introduced two variations of the RN, called respectively
Two-stage Relation Network (2S-RN) and Aggregated Visual Features Relation Net-
work (AVF-RN), whose objective is to obtain rich visual relational descriptors before
they are conditioned on the input question.

3.2.1 The Relation Network (RN)

The RN obtained impressive results on relational tasks and in particular on CLEVR. It
combines input objects forming all possible pairs and applies a common transformation
to them, producing activations aimed to store information about possible relationships
among input objects. For the specific task of R-VQA, authors used a four-layer CNN to
learn visual object representations, which are then fed to the RN module and combined
with the textual embedding of the question produced by an LSTM, conditioning the
relationship information on the textual modality. As anticipated in Section 2.2.3, the
core of the RN module is given by the following equation:

r =
∑

i,j

gθ(oi,oj,q) (3.1)

where gθ is a parametric functions whose parameters θ can be learned during the train-
ing phase. Specifically, it is a multi-layer perceptrons (MLP) network; oi and oj are
the objects forming the pair under consideration, and q is the question embedding vec-
tor obtained from the LSTM module. The output r vector is a multi-modal descriptor
carrying information about both visuals and text.

Relation-aware features useful for R-CBIR should be extracted from a stage inside
the network still not conditioned by the question. Hence, valid visual features can be
extracted from the original RN module only at the output of the convolutional layer,
since, after that, questions condition entirely the remaining pipeline. Inspired by the
state-of-the-art works on CBIR [219, 73], we obtain an overall description for the im-
age aggregating all object pair features in output from the CNN. These features ex-
tracted from the plain RN model serve as a relational baseline for better comparing the
introduced 2S-RN and AVF-RN modules.

More in detail, we considered extracting Hi,j([oi,oj]), where oi is a vector ex-
tracted from the i-th position of the last flattened convolutional layer, [·, ·] denotes
concatenation, and Hi,j(·) is an arbitrary aggregation function over all object pairs in-
dexed by (i, j). However, in this work, we aim at producing an R-CBIR baseline for
the introduced benchmark by exploiting only two simple aggregations, namely maxi,j
and avgi,j . We can notice that for these aggregations the following property holds:
Hi,j([oi,oj]) = [Hi(oi), Hj(oj)]. This reveals that the resulting vector is constructed
by concatenating two identical aggregated representations. This is mainly because these
simple aggregation functions process each single object descriptor component indepen-
dently. Hence, in this scenario, we can simply discard half of each resulting vector and
consider only the aggregationHi(oi). This, in the end, consists in simply computing the
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Figure 3.2: Relation Network (RN) architecture.

global max or avg pooling from the last layer of the convolutional module. The RN ar-
chitecture, together with the visual feature extraction endpoint, is shown in Figure 3.2.
Although this descriptor represents our relational baseline, we show in Section 3.4.1
that these features already embed relational knowledge able to defeat state-of-the-art
CBIR solutions on this task.

3.2.2 Two-stage RN (2S-RN)

The two-stage pipeline is aimed at decoupling visual relationships processing (first-
stage) from the question elaboration (second-stage) so that activations from a layer in
the first stage can be employed as visual relationship-aware features.

Our contribution consists in the following: first, we consider all possible relations
between objects vi,j = gθ(oi,oj) in the image. This is what we denoted as first-stage.
The output from this stage is a representation of the relationships between objects in the
image not conditioned on the question. Then, we combine the obtained visual relational
representations vi,j with the query embedding q as follows:

r =
∑

i,j

hψ(vi,j,q) =
∑

i,j

hψ(gθ(oi,oj),q) (3.2)

where hψ is the second-stage, implemented as a MLP with parameters ψ. Using this so-
lution, we constrained the network to learn relational concepts without considering the
questions, at least during the first stage, before the hψ function evaluation. Therefore,
the relationship-aware features for the images can be extracted from the output of any
layer of the gθ function, and then aggregated at inference time computing Hi,j(vi,j).

The overall architecture, named 2S-RN, is shown in Figure 3.3a. For training, we
stick to the procedure reported in [205].

3.2.3 Aggregated Visual Features Relation Network (AVF-RN)

The 2S-RN approach is able to extract the relational content from the visual pipeline
before it is conditioned by the question embedding. Nevertheless, features extracted
from the 2S-RN are still not aggregated and contain all the descriptions from every
pair of objects. For this reason, these features are aggregated only at inference time
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Figure 3.3: Detailed 2S-RN and AVF-RN architectures with layers configuration.

by simply averaging over all the visual pairs. To solve this problem, we introduced
the Aggregated Visual Features Relation Network (AVF-RN), which is able to learn
an aggregated visual representation directly inside the network. Differently from the
previous architectures, in this scenario we consider H to be the sum function, effec-
tively bringing the Aggregated Visual Features Relation Network (AVF-RN) closer to
the original RN formulation. The AVF-RN network can be described by the following
equation:

r = [q, hψ(Hi,j(vi,j))] = [q, hψ(Hi,j(gθ(oi,oj))] (3.3)

with the same naming conventions used for 2S-RN. Although H =
∑

in this case, we
leave H indicated in the formula to stick with the concept that features are extracted
after the application of H , which in this case takes part to the training process. Differ-
ently from 2S-RN, hψ is not evaluated for every pair; instead, it is evaluated once, on
the already aggregated visual features. The architecture has been designed so that each
function gθ, hψ and fφ can be customized with any number of fully-connected layers
with any number of neurons each. More in detail:

• gθ comprises the n layers before the aggregation operation;
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• hψ comprises the m layers between the aggregation and the question insertion;

• fφ comprises the k layers after question insertion; they are aimed at processing
the joint visual aggregated features and the textual ones to obtain the information
needed to predict the answer.

The overall architecture is reported in Figure 3.3b.

3.2.4 Detailed Configurations and Hyper-parameters Tuning

All the presented architectures are trained on the R-VQA task on the CLEVR dataset.
Concerning the RN network, we use the very same setup described by the authors.
In particular, the CNN is composed of 4 convolutional layers each with 24 kernels,
ReLU non-linearities, and batch normalization; both gθ and fφ are composed by 256-
dimensional fully-connected layers, with ReLU non-linearities after every layer, with
four and two layers respectively. The final linear layer with 28 units produces logits
for a softmax layer over the answers vocabulary; finally, the learning rate follows an
exponential step increasing policy, that doubles it every 20 epochs, from 5e-6 up to 5e-
4. Features are extracted directly at the end of the CNN and are aggregated using global
average pooling. 2S-RN follows a very similar setup to the one of the original RN.
Differently from the RN, gθ and the novel hψ are both composed by 2 fully-connected
layers. In this case, features are extracted at the end of the gθ layer, immediately before
the question concatenation. Both RN and 2S-RN reaches very high performances when
trained and tested on CLEVR R-VQA: they obtain 93,6% and 93,8% accuracy on the
test set respectively.

In the case of RN and 2S-RN, the concatenation of the question with all the object
pairs works as a simple but quite effective attention mechanism. The novel AVF-RN
model, instead, introduces the question embedding after the aggregation function. With
this modification, the model gains in feature relational expressiveness but, on the other
hand, the attention-like effect is lost. For this reason, we obtain an overall lower ac-
curacy with respect to the other architectures. Furthermore, AVF-RN is substantially
different from the other models. For this reason, we would need to re-settle the hy-
perparameters for accomodating the architectural changes. There are several hyper-
parameters that should be tuned and an extensive search is infeasible with the available
hardware, so we concentrate on the most relevant ones. In this network, the most crit-
ical hyperparameters are the number of fully-connected layers for every function gθ,
hψ, and fφ, namely n, m, k, and the output size for each one of these layers. For
the remaining hyper-parameters, we try to stick to successful configurations observed
when training the RN and the 2S-RN architectures. In Table 3.1 we collect some of
the hyper-parameters experimentation we performed on this architecture, together with
the reached accuracy on the CLEVR R-VQA task. The best result is obtained using
weighted-sum as aggregation, with weights learned during training, one layer of hψ
and three layers of fφ. The aggregation is positioned after the 4-th fully-connected
layer of gθ, while the question is inserted after a single fully-connected layer of hψ.
The 4-th layer of gθ is larger in order to augment the expressiveness of the aggregated
feature. In order to speed up the convergence, we initialize the weights for the CNN and
the first two fully-connected layers of gθ with the weights coming from the respective
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gθ config. hψ config. fφ config. Aggr. Type Accuracy(%)

256, 256, 512 256 256, 256 sum 53.8
256, 256, 256, 512 256 256, 256 sum 53.2
256, 256, 256, 256 256 256 ,256, 256 sum 54.0
256, 256, 256, 512 256 256, 256, 256 sum 54.2
256, 256, 256, 1024 - 512, 1024 weighted-sum 55.7
256, 256, 256, 512 256 256, 256, 256 weighted-sum 64.5

Table 3.1: The accuracy values of different fully-connected layer configurations for every function gθ,
hψ and fφ. Each configuration includes the output size for every fully-connected layer.

layers of the 2S-RN architecture (they are the only ones to maintain the same role and
the same interface with respect to the AVF-RN).

Although the final accuracy is quite far from the performance reached by the RN and
the 2S-RN architectures, we claim that this is enough for learning relationship-aware
visual features, and we confirm this with targeted experiments on our downstream re-
trieval task.

3.3 Constructing a R-CBIR Ground-truth

In order to quantitatively evaluate the performance of the introduced architectures on
the downstream R-CBIR task, we need to construct a suitable ground-truth. A R-CBIR
ground-truth can be constructed by defining, for each query image, which are the most
relevant ones according to some relationship-aware distance metric defined on the avail-
able scene-graphs.

Scene graphs The best way to formally describe relationships among objects inside a
scene is by using scene graphs, already available both in CLEVR and Sort-of-CLEVR.
More in detail, a scene graph contains nodes, that account for objects occupying the
scene and edges, that describe relations occurring among them. Every node or edge
can be assigned a set of attributes that fully describe them. For Sort-of-CLEVR, nodes
carry information regarding objects color, shape together with their absolute positions
(left/right or up/down with respect to the scene). An edge, instead, carries information
about the kind of relationship it is describing. In Sort-of-CLEVR, an edge can refer
to farthest and nearest relations. Unlike the Sort-of-CLEVR case, CLEVR object at-
tributes do not include absolute positions since CLEVR deals uniquely with relational
questions, and the possible attributes are the color, the shape, the material and the size.
CLEVR also includes an higher number and more detailed spatial relations: to the left
of, to the right of, in front of, behind. In Figure 3.4, we report an example image for
each dataset together with the associated scene-graphs. Notice how, although CLEVR
graph is complete, half of the edges can be removed without losing information, since
to the right of implies an opposite edge to the left of and in front of implies an opposite
edge behind.
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(a) Sort-of-CLEVR scene (b) CLEVR scene
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Figure 3.4: Example of scenes with associated scene-graphs

3.3.1 Ground-truth Generation

We define a ground-truth for retrieving images with similar relations among objects
relying on the similarity between scene graphs. Two scene graphs should be similar if
they can depict almost the same relations between the same objects. However, eval-
uating the similarity between two graphs is not trivial; it is often a subjective task as
there are aspects of the graph — for example, the attributes associated to nodes — that
weight differently, depending on the specific application.

Although many solutions have been proposed in literature for defining distances be-
tween graph-structured data [38], in this particular use case we decided to employ the
Graph Edit Distance (GED), that is an extension of the well-known edit distance work-
ing on strings. The edit distance is defined as the shortest number of delete, insert,
substitute operations needed in order to transform the source string into the target one.
Differently from strings, edit operations on graphs include delete, insert, substitute for
both nodes and edges, for a total of six edit operations. The problem is faced as an
optimization problem. Since the GED problem is known to be computationally hard,
in this work we employ two different implementations [1, 200]. The proposal in [1]
describes an exact, non-approximated version of the GED algorithm. We reference it
as Exact-GED. While execution times are acceptable for Sort-of-CLEVR graph data,
they become easily unworkable on CLEVR, even when removing the redundant behind
and left edges. For this reason, the relaxation proposed in [200] is able to perform an ef-
ficient approximation of the algorithm. We refer to this as Approx-GED. Approx-GED
does not consider the entire span of solutions. Instead, it looks for a tiny subset of edit
sequences, obtained by first matching similar nodes using linear assignment and then
matching edges on the ruled node pairing. Nevertheless, during experimentation, we
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Steps Cost

1. Substitute node small-cyan-metal-cylinder with big-cyan-metal-
sphere (change 2 attributes)

0.5

2. Substitute edge small-cyan-metal-cylinder behind small-blue-
rubber-cylinder with big-cyan-metal-sphere in front of small-blue-
rubber-cylinder

1.0

Figure 3.5: Example of computation of the Graph Edit Distance between two scene-graphs, using the
soft-match policy. The returned cost is 1.5 in this case.

empirically measured that the resulting approximated ground-truth is perfectly com-
parable with the exact one. Both implementations allow for the customization of the
node-edge edit costs on the basis of their attributes. We applied the following policies:

• nodes-edges insertion or deletion has always a cost of 1;

• edge substitution cost is 1 if edges do not belong to the same kind of relation, 0
otherwise;

• node substitution cost can be driven by two different policies:

– soft-match: all attributes of a node weight equally during a substitution. So,
considering a total of 4 attributes, if three attributes match the substitution
cost is 3/4 = 0.75. This is the fairest and most neutral solution since it does
not prefer any attribute over all the others;

– hard-match: the cost is 1 if at least one attribute value differs. It is 0 only if
all attributes match.

To clarify the functioning of the GED algorithm using our cost policies, we report in
Figure 3.5 an example on CLEVR with soft-match. In the light of this, given a query,
we compute the ground-truth ranking of the dataset by sorting all scenes using the GED
distances computed between the scene graph of the query image and the graphs from
all the others.

3.4 Experiments

In our extensive experimental setup, we aim at verifying if visual features extracted
from our improved architectures are better at describing visual relationships than state-
of-the-art CBIR features. We generate image rankings from relational features by nor-
malizing all the vectors obtained in output from theH function, and then computing the
Euclidean distance between the query feature and all the others. From the ranking point
of view, this is equivalent to ranking by decreasing cosine similarity. We use the Spear-
man’s ρ correlation index for evaluating the ranking goodness against our ground-truth.
Spearman’s ρ is a common ranking similarity measure often employed in information
retrieval scenarios [154], as explained in Section 2.4.2.

As a baseline, we computed the ranking obtained with one of the state-of-the-art
non-relational image descriptors for image instance retrieval, namely the R-MAC de-
scriptor [219]. With R-MAC, the similarity score between two images is obtained by
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Figure 3.6: High-level overview of the R-CBIR evaluation pipeline.

Sort-of-CLEVR CLEVR

GT policy soft-match hard-match soft-match hard-match

R-MAC [73] 0.49±0.03 0.07±0.03 −0.15±0.02 −0.18±0.02
RN [205] max 0.36±0.02 0.14±0.03 −0.24±0.02 −0.25±0.03
RN [205] avg 0.64±0.02 0.34±0.04 0.08±0.05 0.06±0.05

2S-RN max 0.70±0.02 0.58±0.03 −0.19±0.03 −0.21±0.03
2S-RN avg 0.24±0.02 0.18±0.02 0.15±0.04 0.13±0.04

Table 3.2: Spearman’s ρ correlation index for existing features and our novel two-stage extracted fea-
tures (2S-RN), both using CLEVR and Sort-of-CLEVR. We report the 95% confidence intervals for
the mean over 500 queries.

computing the cosine similarity between image descriptors. In our experiments, we
adopted the R-MAC descriptor extracted from the pre-trained model proposed in [73].

First of all, for the RN and the 2S-RN architectures which do not internally aggre-
gate the visual features, we perform a preliminary analysis for understanding what is
the effect of different aggregation functions at inference time and for evaluating the
different variants of the GED algorithm used to generate the baseline. In this prelim-
inary analysis, we target both CLEVR and Sort-of-CLEVR datasets. Afterwards, we
compare in great detail all the three RN architectures — the plain RN, the 2S-RN, and
the AVF-RN — targeting carefully-designed subsets of the CLEVR dataset. CLEVR,
in fact, contains the most challenging images and launches this work towards more
realistic use cases.

3.4.1 Preliminary Experiments on RN and 2S-RN

We evaluate both convolutional and 2S-RN features against the generated ground-truth.
In our experiments, features from 2S-RN are extracted from the last layer of gθ. We
employ features extracted from the convolutional layer of the original RN as baseline
for evaluating features from the first-stage of our novel 2S-RN approach. Table 3.2
reports values of Spearman’s ρ for the two considered datasets. CLEVR results can be
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Figure 3.7: Top 10 Sort-of-CLEVR images using our solution (2S-RN) and R-MAC against our ground-
truth for a given query (on top).

reproduced using the code publicly available on GitHub1. Spearman’s ρ correlations
are relative to the two generated ground-truths, soft-match and hard-match obtained by
ranking images using Approx-GED. Notice that the Spearman’s ρ correlation between
rankings obtained with exact and approximated versions on Sort-of-CLEVR dataset
over 500 queries gives a value of 0.89, using the soft-match policy. Given this result,
we can empirically claim that the employed GED approximation is legitimate in this
particular scenario.

Correlation index has been evaluated over the rankings generated from 500 query
images, in order to produce statistically meaningful results. We can notice that, with
a 95% confidence interval on the mean, convolutional relational features definitely de-
feat R-MAC features on this relational task. Furthermore, relational features extracted
from the 2S-RN are noticeably better than convolutional relational features extracted
from the plain RN. These results are reasonable since the original RN has problems
when processing the image alone without having also the question as input, while R-
MAC tends to retrieve images containing the very same objects present in the query
disregarding relative size, order or position.

Depending on the dataset, different aggregation methods can produce diverse opti-
mal results. In particular, the max aggregation seems to work better on Sort-of-CLEVR
dataset, while avg obtain the best results on CLEVR. This could be explained consid-
ering that the avg aggregation is more sensible to the number of identical relations
happening inside the scene. However, the number of relations involved among objects
having same attributes is quite important when considering CLEVR since, unlike in
Sort-of-CLEVR, it is more likely to find multiple instances of the same relationship in-
sisting on similar objects. Thus, discriminating the CLEVR images by their cardinality
can be relevant for obtaining an overall better ranking. Moreover, the max aggrega-
tion becomes unstable and sensible to outliers when the number of samples increases;
a single huge activation in one of the 4,096 features in CLEVR can significantly affect
the aggregation results. This is in line with findings in aggregation techniques for CNN
features [219, 73], where sum and avg aggregations are preferred.

1https://github.com/mesnico/learning-relationship-aware-visual-features
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Although it is quite difficult to give an objective evaluation of RN features and R-
MAC ones by only looking at the first more relevant images, visual evaluation reported
in Figure 3.7 are useful for giving an intuition beyond statistics. Visual results for the
CLEVR dataset are reported in the next paragraph, where we evaluate all the proposed
architectures and the baselines on different splits of the more realistic CLEVR dataset.

3.4.2 Detailed Evaluation on CLEVR

In this section, we extend the previous study on the CLEVR dataset, by including the
AVF-RN architecture and considering different slices of the dataset to derive more pre-
cise conclusions. Furthermore, in these experiments we probe another non-relational
baseline. In particular, we train a simple architecture on a multi-classification task,
where the objective consists in correctly classifying all the objects inside every CLEVR
scene. This baseline is aimed at understanding if a CNN trained to recognize objects
and their attributes, without focusing on relationships, can obtain good results on this
task. This simple architecture consists of the CNN already used in the original RN ar-
chitecture and 2 fully-connected layers with ReLU non-linearities for use as multi-label
classifier. Similarly to the basic RN architecture, features are extracted by average-
pooling the CNN activations. We call this architecture multi-label CNN.

All the architectures are trained on the CLEVR training set, while the features are
always extracted on the test-set in order to evaluate the generalization capabilities of
the system. All the architectures are trained on an RTX 2080Ti, with a batch size of
640. During the experiments, we observe that the training time was almost the same for
all the RN-derived architectures. We train for about 300 epochs, and we pick the model
having the highest validation accuracy among all the training epochs. The average
training speed is about 25 minutes per epoch, while the feature extraction requires only
about 1 minute for the whole test set. Questions are not needed at extraction time, so
the entire architecture is considerably lighter.

We use the following three different dataset setups for evaluating the results:

1. CLEVR-Full — we use the entire CLEVR test set. Any image can be selected as
query and any image could be eligible for being retrieved;

2. CLEVR-Filtered-Queries — we select as queries only the images containing at
most N objects, while any image remains eligible for being retrieved;

3. CLEVR-Subset — we filter the entire CLEVR test set with images containing at
most N objects. Therefore, both queries and retrieved images contain at most N
objects.

CLEVR-Full is the same scenario used for evaluating 2S-RN performances in the
previous section. However, the approximated GED algorithm we employ presents some
notable differences with the exact version when graphs have a large number of nodes.
For this reason, during experimentation, we explore also the simpler scenarios CLEVR-
Filtered-Queries and CLEVR-Subset. CLEVR comes with rendered images containing
no more than 10 objects. In our experiments we set N equal to 5.

Table 3.3 reports values of Spearman’s ρ correlation index for all the experiments
on all the three versions of the CLEVR datasets. As before, Spearman’s ρ correlations
are relative to the ground-truth generated as explained in Section 3.3 and obtained by
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CLEVR Full CLEVR Filtered Queries CLEVR Subset

R-MAC [73] −0.15±0.02 0.02±0.02 0.09±0.01
Multi-label CNN 0.05±0.05 0.64±0.04 0.18±0.04

RN [205] 0.04±0.05 0.64±0.03 0.20±0.03
2S-RN [156] 0.15±0.04 0.65±0.02 0.26±0.02
AVF-RN 0.28±0.04 0.72±0.02 0.34±0.02

Table 3.3: Spearman-Rho correlation index for the explored methods. We report the 95% confidence
intervals for the mean over 500 queries.

ranking images using the approximated version of the GED algorithm. The Spearman’s
ρ correlation index is evaluated over the rankings generated using 500 query images, in
order to produce statistically meaningful results.

Discussion The AVF-RN features reach the state-of-the-art on the R-CBIR task, de-
feating both non-relational baseline methods (R-MAC and multi-label CNN) and the
RN and 2S-RN relationship-aware techniques. It is interesting to notice the similarity
among the results of the RN and the multi-label CNN features. These results confirms
that the features extracted from the last CNN layer of the RN, without further pro-
cessing, can probably discriminate among object and attribute instances, leaving the
relationships out. On the CLEVR-Full scenario, our AVF-RN features obtain an almost
doubled Spearman’s ρ value with respect to the 2S-RN one. This suggests that the
novel AVF-RN architecture is able to correctly order complex relevant scenes in terms
of their relational content. However, due to the approximation introduced by Approx-
GED in case of large number of objects, it is difficult to strongly confirm this claim in
this scenario.

On the other hand, in the CLEVR-Filtered-Queries scenario, the images with few
objects are privileged by the ground-truth. Hence, standard approaches like R-MAC
or simple CNN features behave quite well since they can exploit their capability of re-
trieving images having a similar number of objects with respect to the query. Besides
counting, they are in any case unable to catch intrinsic inter-object relationships. In-
stead, these details are well captured by AVF-RN and 2S-RN features. The aggregation
learned inside the AVF-RN network obliges the layers after the aggregation to learn
compact and smart scene descriptions. Consequently, AVF-RN captures more detailed
scene-information with respect to the aggregated features computed at inference time
in 2S-RN.

In the CLEVR-Subset scenario, instead, all the retrieved images are forced to contain
a small number of objects. In this case, as all the images contain few objects, the only
way to obtain good results is to understand the intrinsic relational content of the scene.
This explains why there is a great improvement of AVF-RN features over the other
methods in this case.

As for the Sort-of-CLEVR case, we report a visual evaluation in Figure 3.8 for giv-
ing a qualitative feedback and an intuition beyond statistics. We collect these visual
results from the challenging Full CLEVR experiment. In particular, we can see that
both R-MAC and multi-label CNN features always try to find the very same objects as
the query, in any position inside the image. Instead, it seems that 2S-RN and AVF-RN
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3.4. Experiments

Query Image

Approx
GED

RMAC

Multi-label
CNN

RN

2S-RN

AVF-RN

Figure 3.8: Most relevant images for the proposed query from Full CLEVR experiment, using both non-
relational approaches (R-MAC, Multi-Label CNN) and relational ones (RN, 2S-RN, AVF-RN). The
first row belongs to the ground-truth generated as explained in Section 3.3.

are interpreting the scene from an high-level perspective by finding all the images con-
taining a big object (better if a metallic blue cube) surrounded by other smaller objects.
On our website2 it is possible to find an interactive browsing system for exploring the
R-CBIR results from the proposed methods for different query images.

3.4.3 Success/Failure Analysis

In Figure 3.9 we report simple cases of success and failure of the top-performing
method AVF-RN against the two baselines R-MAC and multi-label CNN. We assume
the result as successful if our AVF-RN features can retrieve more ground-truth images
with respect to the baselines; otherwise, the experiment is considered failed for the
examined query. For the sake of simplicity, we analyze only the top 10 results.

We can notice that successful retrieved images (Figure 3.9a and Figure 3.9b) are
well approximating the ground-truth scene graphs. This is probably because AVF-RN
features exhibit some scene-wide image understanding that is not tailored to the features
of single objects. On the other hand, R-MAC features are quite good at catching the
key visual features of the single objects, such as their size, but they have troubles to
focus the attention on the global scene arrangement.

Failure cases demonstrate that AVF-RN features cannot always catch the relational
content of the scene. In particular, in the failure example of Figure 3.9c, the AVF-
RN features seem to be always triggered by a yellow object, that is a not so important
characteristic when considering the whole scene arrangement. Instead, Figure 3.9d
demonstrates that is difficult to catch objects arranged in precise configurations (in this
case, placed on the same line). In this example, both the multi-label CNN baseline and
our AVF-RN features fail.

2www.rcbir.org
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Query Image

Approx GED
(GT)

RMAC
(Baseline)

AVF-RN
(Ours)

(a) Success against R-MAC features

Query Image

Approx GED
(GT)

Multi-label CNN
(Baseline)

AVF-RN
(Ours)

(b) Success against Multi-label CNN features

Query Image

Approx GED
(GT)

RMAC
(Baseline)

AVF-RN
(Ours)

(c) Failure against R-MAC features

Query Image

Approx GED
(GT)

Multi-label CNN
(Baseline)

AVF-RN
(Ours)

(d) Failure against Multi-label CNN features

Figure 3.9: Success (a)(b) and failure (c)(d) cases for AVF-RN compared to the baselines, R-MAC (a)(c)
and Multi-Label CNN (b)(d). Matches among GT and AVF-RN are marked in green, while matches
among GT and the baselines in red.
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3.5 Summary

In this chapter, we defined the sub-task of Relational Content-based Image Retrieval (R-
CBIR) in which retrieved images should be similar to the query in terms of relationships
among objects. This was motivated by the fact that current image retrieval systems,
performing traditional CBIR, are not able to infer relations among the query and the
retrieved images.

We developed some variations of the Relation Network (RN) trained on Relational
Visual Question Answering (R-VQA) on the CLEVR dataset, from which we extracted
some meaningful relationship-aware visual features. We extended the CLEVR dataset
adding information about scene-graph similarities for measuring the retrieval perfor-
mance on the novel R-CBIR task. On this dataset, we obtained very promising results,
and we discussed upon the limits of current image retrieval descriptors.

In the end, this chapter presented a preliminary study on the possibility of learning
relationship-aware visual descriptors on very restricted and controlled datasets. Al-
though this research cannot be directly applied to realistic scenarios including real-
world pictures, it paves the way towards a deeper understanding of relationship-aware
architectures for use in retrieval applications. In the next chapter, many of the intro-
duced concepts reoccur, although in a realistic scenario with extremely prominent use
cases.
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CHAPTER4
Visual-Textual Matching and Retrieval

In Chapter 3, we showed how the relation network could be employed for extracting
relationship-aware visual features, producing descriptors that embed spatial relation-
ships between visual entities. In this chapter, we try to further grow this idea by (a)
moving to real-world images and (b) enabling highly semantic cross-modal retrieval.
Concerning the point in (a), considering real-world images enables the developed tools
to be usable in real use cases. To discuss the importance of the point in (b), we need
to discuss an intrinsic limitation of the approach proposed in Chapter 3. The AVF-RN
network was designed to solve the R-VQA upstream task and did not include any tar-
geted objective for producing retrieval-effective features. This was in line with previous
works that used features from networks pre-trained on image classification [219]. Nev-
ertheless, the features extracted using this approach suffer from the lack of discrimina-
tive power, as described in Section 2.4.1. Direct correspondence between images and
scene-graphs to produce relational discriminative features is in principle possible by
enforcing image features and graph features to lay into the same common space, using
a metric learning objective. While this is feasible using computer-generated data, it is
difficult on real-world images, as we would require a manually annotated scene-graph
for each image. Although some publicly available datasets carry this kind of annota-
tions — OpenImages [120] or Visual Genome [116] — this approach is definitely not
scalable in the long term, as it requires too complex human-provided annotations.

There is another type of data able that carries very high-level information and de-
scribes relationships between entities: textual data. When we caption an image with
some natural language text, we are implicitly encoding the image with symbols carry-
ing high-level semantics. In turn, we are creating a structured description of that image.
This is what scene-graphs would natively encode; nevertheless, natural language texts
have been used by humans for thousands of years to spread ideas, knowledge and re-
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lationships. Thanks to this, texts are natively widespread in our society. It is relatively
straightforward to find images with associated textual descriptions on the web, and it
is easier to ask annotators to caption an image instead of encoding its full scene-graph.
Furthermore, dealing with two well-established modalities — images and natural lan-
guage texts — enables cross-modal applications, in which the user, for example, can
search images feeding the system a textual query and vice-versa. In the first sections of
this chapter, we exactly tackle the cross-modal retrieval task, focusing on both effec-
tiveness and efficiency aspects.

From a broader perspective, in this chapter, we try to fill the semantic gap between
images and texts by employing the Transformer architecture, which recently demon-
strated groundbreaking relational abilities. In fact, the non-local Transformer’s atten-
tion mechanism can relate distant and heterogeneous entities, creating a powerful cross-
modal reasoning pipeline.

This chapter is organized as follows. In Section 4.1 we present the framework for
creating and evaluating cross-modal features for use in large-scale visual-textual re-
trieval applications. In particular, we introduce two Transformer Encoder based ar-
chitectures, able to generate highly semantic cross-modal features. In Section 4.2, we
discuss about some preliminary results for quantizing and sparsifying the features ob-
tained in Section 4.1, for indexing them using off-the-shelf text-based retrieval tools.
Furthermore, in Section 4.3, we explore the abilities of these features to perform se-
mantic image retrieval. The results obtained from these researches are applied to a
real use case in Section 4.4, where we present a tool for large-scale video retrieval.
In Section 4.5, instead, we leave the retrieval framework, and we employ the same
visual-textual Transformer-powered technologies to demonstrate their effectiveness on
another critical application: the detection of disinformation campaigns in social net-
works. Finally, in Section 4.6, we summarize the work presented in this chapter and
draw the conclusions.

This chapter collects the research published in the following papers:

• Transformer Reasoning Network for Image-text Matching and Retrieval. Interna-
tional Conference on Pattern Recognition (ICPR). 2021. [163];

• Fine-grained Visual Textual Alignment for Cross-modal Retrieval using Trans-
former Encoders. Trans on Multimedia Computing Communications and Appli-
cations (TOMM). 2021. [161];

• AIMH at SemEval-2021 Task 6: Multimodal Classification using an Ensemble of
Transformer Models. Proceedings of the 15th International Workshop on Seman-
tic Evaluation (SemEval). 2021. [164];

• VISIONE at Video Browser Showdown 2021. International Conference on Mul-
timedia Modeling (ICMM). 2021. [8];

• Towards Efficient Cross-Modal Visual Textual Retrieval using Transformer-Encoder
Deep Features. International Conference on Content-Based Multimedia Indexing
(CBMI). 2021. [162];

• Relational Visual-Textual Information Retrieval. International Conference on Sim-
ilarity Search and Applications. 2020. [155].
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Chapter 4. Visual-Textual Matching and Retrieval

Matching

Transformer Encoder 
Reasoning

A tennis player serving 
a ball on the court ...

Figure 4.1: High-level overview of the Transformer-based image-text matching. Image and text are
seen respectively as sets of image regions and sequences of words, and they are processed using a
Transformer-based reasoning engine.

4.1 Transformers for Effective and Efficient Visual-Textual Retrieval

Joint processing of images and natural language text is crucial nowadays, as it enables
very interesting and challenging tasks. One of the most interesting problems is cross-
modal retrieval, in which we aim at retrieving images given a textual description. This
task is intrinsically challenging due to the semantic gap that visual data entails. Further-
more, the matching should be scalable and efficient to be deployed in real cross-modal
retrieval systems.

Inspired by state-of-the-art works in cross-modal matching, in this section we pro-
pose two architectures able to efficiently and effectively match images and natural lan-
guage texts. We are to tackle this important problem by employing the recently in-
troduced Transformer models. Unlike current multi-modal Transformer methods —
presented in Section 2.3.5 and further discussed in the following section — the intro-
duced architectures are guided to produce compact and semantic descriptions of im-
ages and sentences. Compact and informative descriptions are required in the context
of large-scale retrieval systems, where image and text embeddings can be compared
and indexed using a simple similarity function (e.g., cosine similarity) defined on a
common embedding space. A rough overview of the approach is shown in Figure 4.1.

The first introduced network is called Transformer Encoder Reasoning Network
(TERN) [163]. Transformer Encoder Reasoning Network (TERN) is able to produce
compact visual and textual features laying in the same common space by attending to
all the words from the sentence and the regions from the image. The second network is
called Transformer Encoder Reasoning and Alignment Network (TERAN) [161], and
it extends TERN by forcing a fine-grained alignment loss between image regions and
sentence words, using supervision only at the global image-sentence level.

This section also discusses the shortcomings of the evaluation metrics used to mea-
sure the cross-modal retrieval effectiveness. In particular, the current literature usually
employes binary relevance to evaluate the cross-modal retrieval task, constrained by the
lack of fine-grained annotations in currently available datasets. In many cases, these
metrics cannot capture the real user satisfaction. In the light of this, we propose to use
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4.1. Transformers for Effective and Efficient Visual-Textual Retrieval

the Normalized Discounted Cumulative Gain (NDCG) metric with ad-hoc constructed
relevance scores, accounting for non-exact yet relevant matches.

Before diving into the details of the proposed architectures and evaluation proto-
cols, in the following two sections we better frame the problem reviewing the relevant
literature and discussing the training and the evaluation protocols.

4.1.1 Visual-Textual Matching using Transformers

In this section, we review some of the previous works related to image-text joint pro-
cessing for cross-modal retrieval and alignment, and high-level relational reasoning, on
which this work lays its foundations. Also, we briefly summarize the evaluation metrics
available in the literature for the cross-modal retrieval task.

Image-Text Processing for Cross-Modal Retrieval Image-text matching is often cast to the
problem of inferring a similarity score among an image and a sentence. Usually, one
of the common approaches for computing this cross-domain similarity is to project
images and texts into a common representation space on which some kind of similarity
measure can be defined (e.g.: cosine or dot-product similarities). Images and sentences
are preprocessed by specialized architectures before being merged at some point in the
pipeline.

Concerning image processing, the standard approach consists in using CNNs, usu-
ally pre-trained on image classification tasks. In particular, [115, 223, 135, 88, 63] use
VGGs, while [139, 65, 77, 89] use ResNets. Concerning sentence processing, many
works [41, 145, 109, 65, 125, 122, 89] employ GRUs or LSTMs recurrent networks
to process natural language, often considering the final hidden state as the only fea-
ture representing the whole sentence. The problem with these kinds of methodologies
is that they usually extract extremely summarized global descriptions of images and
sentences. Furthermore, in many works the image embeddings are extracted from stan-
dard image classification networks, such as ResNet or VGG, by employing the network
activations before the classification head. Usually, descriptions extracted from CNN
networks trained on classification tasks are able to only capture global summarized
features of the image, ignoring important localized details. Therefore, a lot of use-
ful fine-grained information needed to reconstruct inter-object relationships for precise
image-text alignment is permanently lost.

For these reasons, many works try to employ region-level information, together with
word-level descriptions provided by recurrent networks, to understand fine-grained
alignments between words and localized patches in the image. Recent works [86, 136,
137, 87, 230, 43, 122] exploit the availability of pre-computed region-level features ex-
tracted from the Faster-RCNN [197] object detector. An alternative consists in using
the features maps in output from ResNets, without aggregating them, for computing
fine-grained attentions over the sentences [239, 90, 228, 231, 79, 99].

Recently, the Transformer architecture [220] achieved state-of-the-art results in many
natural language processing tasks, such as next sentence prediction or sentence classi-
fication. The results achieved by the BERT model [58] demonstrated the power of the
attention mechanism to produce accurate context-aware word descriptions. For this rea-
son, some works in image-text matching use BERT to extract contextualized word em-
beddings for representing sentences [235, 207, 187, 232]. In Section 2.3.5 we reviewed
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Chapter 4. Visual-Textual Matching and Retrieval

some works that employ BERT-like processing on both visual and textual modalities,
such as ViLBERT [145], ImageBERT [184], Pixel-BERT [91], VL-BERT [215]. These
latest works achieve state-of-the-art results in sentence and image retrieval, as well as
excellent results on the downstream word-region alignment task [44]. However, they
cannot produce separate image and caption descriptions; this is an important require-
ment in real-world search engines, where usually, at query time, only the query element
is forwarded through the network, while all the elements of the database have already
been processed by means of an offline feature extraction process. These architectures
model a function s = φ(I, C) that measures the affinity between an image and a cap-
tion, where I is an image, C is the caption and s is a normalized score in the range
[0, 1]. Following this path, at query time we would need to evaluate φ(I, C) for every
element in the database. This is infeasible for scalability issues and timing constraints.

Some architectures have been designed so that they are natively able to extract dis-
entangled visual and textual features. In particular, in [65] the authors introduce the
VSE++ architecture. They use VGG and ResNets visual features extractors, together
with an LSTM for sentence processing, and they match images and captions exploiting
hard-negatives during the loss computation. With their VSRN architecture [125], the
authors introduce a visual reasoning pipeline built of Graph Neural Networks (GNNs)
and a GRU to sequentially reason on the different image regions. Furthermore, they
impose a sentence reconstruction loss to regularize the training process. The authors
in [90] use a similar objective, but employing a pre-trained multi-label CNN to find
semantically relevant image patches and their vectorial descriptions. Differently, in
[207] an adversarial learning method is proposed, where a discriminator is used to learn
modality-invariant representations. The authors in [79] use a contextual attention-based
LSTM-RNN which can selectively attend to salient regions of an image at each time
step, and they employ a recurrent canonical correlation analysis to find hidden semantic
relationships between regions and words.

The works closer to the TERAN setup presented in the next sections are SAEM
[235] and CAMERA [187]. In [235] the authors use triplet and angular loss to project
the image and sentence features into the same common space. The visual and tex-
tual features are obtained through Transformer Encoders (TEs) modules. Differently
from the TERAN proposal, they do not enforce fine-grained alignments, and they pool
the final representations to obtain a single-vector representation. Instead, in [187] the
authors use BERT as language model and an adaptive gating self-attention module to
obtain context-enhanced visual features, projecting them into the same common space
using cosine similarity. Unlike our work, they specifically focus on multi-view sum-
marization, as multiple sentences can describe the same images in many different but
complementary ways.

High-Level Reasoning Another branch of research from which this work draws inspira-
tion is focused on the study of relational reasoning models for high-level understanding.
The work in [206] proposes an architecture that separates perception from reasoning,
namely the Relation Network (RN), discussed in Section 2.2.3. Other solutions try
to stick more to a symbolic-like way of reasoning. In particular, [84, 106] introduce
compositional approaches able to explicitly model the reasoning process by dynami-
cally building a reasoning graph that states which operations must be carried out and
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in which order to obtain the right answer. Recent works employ Graph Neural Net-
works (GNNs) to reason about the interconnections between concepts. The authors in
[246, 244, 128] use GNNs to reason on the image regions for image captioning, while
[241, 132] use GNNs with attention mechanisms to produce the scene graph from plain
images.

Cross-Modal Retrieval Evaluation Metrics All the works involved with image-caption match-
ing evaluate their results by measuring how good the system is at retrieving relevant im-
ages given a query caption (image-retrieval) and vice-versa (caption-retrieval). Usually
the Recall@K metric is used [65, 125, 184, 145, 123], where typically K = {1, 5, 10}.
On the other hand, [41] introduced a novel metric able to capture non-exact results by
weighting the ranked documents using a caption-based similarity measure. In this work,
we extend the metric introduced in [41], giving rise to a powerful evaluation protocol
that handles non-exact yet relevant matches. Relaxing the constraints of exact-match
similarity search is an important step towards an effective evaluation of search engines.

4.1.2 Training and Evaluation Protocols

The neural networks that produce suitable vectorial representations for cross-modal
retrieval are usually trained on a specific objective called cross-modal matching. Given
an image-text pair {I, T}, this objective consists in learning a normalized relevance
score s ∈ [0, 1] which is high if I is described by T (or vice-versa), and low otherwise.
Usually the relevance score is constructed as a similarity score between image and text
vectors produced respectively by image and text encoders fθ and gψ:

s = cos(fθ(I), gψ(T )) =
fθ(I) · gψ(T )

‖fθ(I)‖2 ‖gψ(T )‖2 , (4.1)

where cos(·) is the cosine similarity and fθ and gψ are the text and image encoders
parametrized respectively by θ and ψ. This kind of construction for the similarity
scores defines a metric space where the similarity between images and text is mea-
sured through a dot product between normalized vectors (i.e., cosine similarity). A
nice structure of this space can be obtained using a triplet loss objective, by getting
closer the related {I, T} pairs while pulling away unrelated ones. More in details,
recent approaches in cross-modal matching [65, 125, 109, 258] use the so-called hinge-
based triplet ranking loss objective. In particular, this loss considers an image as an
anchor and tries to attract a positive sentence while pushing away a negative one, very
similarly to the triplet loss described in Section 2.1.4. Concurrently, it performs the
symmetric operation: it takes a sentence as an anchor and samples two images, a pos-
itive and a negative one, to be pushed and pulled away respectively. An overview of
this dynamic is shown in Figure 4.2. In datasets where every image Ii is accompa-
nied by k human written sentences T ki (e.g. MS-COCO or Flickr30k), it is possible to
construct the related pairs {Ii, T ki }, while all the negative pairs can be constructed as
{Ii, T kj } ∀i, j s.t. i 6= j.

During the evaluation phase, the best way to probe the constructed space is to search
all the images related to a given text or vice-versa. If the space has the desired structure,
it is possible to perform KNN search to find the images more similar to a given sentence
or vice-versa (Figure 4.3).
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Image Encoder

Text Encoders

a dog is sitting on the 
passenger seat of a 
parked vehicle

a red sign in front of a 
semaphore while a car 
is passing

a dog is sitting on the 
passenger seat of a 
parked vehicle

Text Encoder

Image Encoders

common space

Figure 4.2: The dynamics operated in the common space by the hinge-based triplet ranking loss.

Image Encoder

Image-to-Text
k-NN Search

(a) Text-to-Image retrieval.

Text Encoder

Text-to-Image
k-NN Search

a dog is sitting on the 
passenger seat of a 
vehicle parked near a 
waterfront

(b) Image-to-Text retrieval.

Figure 4.3: The evaluation is performed by measuring the quality of a k-nn search between the query
and the vectors from the other modality. Triangles are image vectors, while dots are sentence vectors
laying in the same common-space.

Notice that in literature the retrieval task is often used as a proxy task for evalu-
ating how well an architecture is able to match related images and sentences. In this
chapter, we consider it the main goal, as this research is geared towards the study of
effective and efficient cross-modal search engines that could be deployed in real sce-
narios. Therefore, the metrics employed during the evaluation phase take inspiration
from the information retrieval literature. Evaluating the effectiveness of a method per-
forming information retrieval is often difficult since different metrics usually capture
non-overlapping features of interest, all possibly relevant. As of now, many works in
the computer vision literature treating image-text matching measure the retrieval abil-
ities of the proposed methods by employing the well known Recall@K metric. The
Recall@K measures the percentage of queries able to retrieve the correct item among
the first K results. In datasets where images come with a list of sentences written by
human annotators, this metric is very simple to evaluate: given a textual query cho-
sen among all the sentences in the dataset, the exact matching image is the one that
in the dataset is associated with that sentence (in case of sentence-retrieval) and vice-
versa for the image-retrieval scenario. This is a metric perfectly suitable for scenarios
where the query is very specific and thus we expect to find the elements that match
perfectly among the first search results. However, in common search engines, the users
are not asked to input a very detailed query, and they are often not searching for an
exact match. They expect to find in the first retrieved positions some relevant results,
with relevance defined using some pre-defined and often subjective criterion. In these
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scenarios, the first retrieved elements could be relevant without being the images/sen-
tences originally paired with the query sentences/images. For these reasons, it would
be nice to weight the intrinsic semantic similarity between an image and a text during
the evaluation phase; in this way, the strict matching/non-matching binary criterion is
relaxed, and an element can be relevant to a certain degree. A graphical representation
of the two situations can be observed in Figure 4.4.

Inspired by the work in [41], we employ a common metric often used in informa-
tion retrieval applications, the Normalized Discounted Cumulative Gain (NDCG). The
NDCG is able to evaluate the quality of the ranking produced by a certain query by
looking at the first p positions of the ranked elements list. The premise of NDCG is that
highly relevant items appearing lower in a search result list should be penalized as the
graded relevance value is reduced proportionally to the position of the result.

As anticipated in Section 2.4.2, the NDCG until position p is defined as follows:

NDCGp =
DCGp

IDCGp

, where DCGp =

p∑

i=1

2reli − 1

log2(i+ 1)
; (4.2)

reli is a positive number encoding the affinity that the i-th element of the retrieved
list has with the query element, and IDCGp is the DCGp of the best possible ranking.
Thanks to this normalization, NDCGp acquires values in the range [0, 1]. The NDCGp

is computed by normalizing the DCGp with respect to the Ideal Discounted Cumulative
Gain (IDCG), that is defined as the DCG of the list obtained by sorting all its elements
by descending relevance:

The reli values can be computed using well-established sentence similarity scores
between a sentence and the sentences associated with a certain image. Being a cross-
modal retrieval setup, the relevance should be a value obtained from a function oper-
ating on an image Ii and a caption Cj . In principle, it could be possible to use the
φ(Ii, Cj) learned by other networks as the ones in [145, 184]. The problem is that φ
is a complex DNN, and Ii, Cj are drawn from a dataset of thousands of elements, in
the best case. This means that constructing a Nc×Ni relevance matrix is computation-
ally unfeasible, where Nc is the number of total captions and Ni is the total number of
images in the dataset.

Usually, in the considered datasets, images come with a certain number of associ-
ated captions. This important consideration can be exploited for efficiently producing
our relevance scores: instead of computing φ(Ii, Cj), we could think of computing
reli = τ(C̄i, Cj), where C̄i is the set of all captions associated to the image Ii, and
τ : S × S → [0, 1] is a similarity function defined over a pair of sentences returning
their normalized similarity score. With this simple expedient, we could efficiently com-
pute quite large relevance matrices using similarities defined over captions, which are
in general computationally much cheaper than similarities computed between images
and sentences directly.

We thus compute the reli value in the following ways:

• reli = τ(C̄i, Cj) in case of image retrieval, where Cj is the query caption

• reli = τ(C̄j, Ci) in case of caption retrieval, where C̄j is the set of captions asso-
ciated to the query image Ij .
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q
1

q
2

q
3

q
4

q
5

...

...

...

...

...

retrieved images

rel
i

i-th image

(b) Semantic-based relevance approach; reli is a a-priori
known score defining the affinity between the query
and the i-th image.

Figure 4.4: (a) only the exact-matching images are used for evaluating the quality of the retrieval, given
sentences as queries; (b) a more "colorful" approach would consider the intrinsic semantic relevance
between a query and the retrieved images. The same reasoning applies for image-to-text retrieval.

In our work, we use ROUGE-L[133] and SPICE[9] as sentence similarity functions
τ for computing caption similarities. These two scoring functions capture different
aspects of the sentences. In particular, ROUGE-L operates on the longest common
sub-sequences, while SPICE exploits graphs associated with the syntactic parse trees,
and has a certain degree of robustness against synonyms. In this way, SPICE is more
sensitive to high-level features of the text and semantic dependencies between words
and concepts rather than to pure syntactic constructions.

4.1.3 Transformer Encoder Reasoning Network (TERN)

Inspired by many recent works that achieved state-of-the-art results in image-text match-
ing, we developed an architecture able to project images and sentences in the same
common-space. Differently from many, however, the developed architecture incorpo-
rates Transformer Encoders (TEs) for processing both the visual and textual pipelines,
and it is designed with to be used in large-scale cross-modal retrieval scenarios. TERN
relies almost entirely on the TE architecture, both for the visual and the textual data
pipelines. The TE takes as input sequences or sets of entities, and it can reason upon
these entities disregarding their intrinsic nature. In particular, we consider the salient
regions in an image as visual entities, and the words present in the caption as language
entities. More formally, the input to our reasoning pipeline is a set I = {r0, r1, . . . , rn}
of n image regions representing an image I and a sequence C = {w0,w1, . . . ,wm} of
m words representing the corresponding caption C.

The overall architecture is shown in Figure 4.5. The reasoning module continuously
operates on sets and sequences of n andm objects respectively for images and captions.
The objective is to produce a compact representation of the n processed regions and of
the m processed words suitable for the downstream task of image-text matching in a
common space with fixed dimensionality. One of the easiest ways to proceed is to pool
the elements of the set/sequence using symmetric functions like sum or avg, or, like
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Figure 4.5: The proposed TERN architecture. Region and words are extracted through a bottom-up
attention model based on Faster-RCNN and BERT respectively. BERT already employs positional
encoding for representing the sequential nature of words, therefore this step is not reported in the
figure. Concerning regions, the extracted bottom-up features are conditioned with the information
related to the geometry of the bounding-boxes. This is done through a simple fully connected stack
in the early visual pipeline, before the reasoning steps. Lm is the matching loss.

in [125], growing a meaningful aggregated representation inside the hidden state of a
recurrent network (GRU or LSTM).

Our method, instead, follows the approach by BERT [58]: we reserve a special token
both at the beginning of the regions set and of the words sequence (I-CLS and T-CLS)
devoted to carrying global information along the two pipelines. For this reason, we
effectively expand the number of image regions to n + 1 and the number of words to
m+ 1, with r0 and w0 reserved for this purpose. Initially, w0 is set to the T-CLS BERT
token, while r0, i.e., I-CLS, is a zero vector. At every reasoning step, this information
is updated attentively by the self-attention mechanism of the TEs. In the end, our final
image and caption features are r0 and w0 in output from the last Transformer Encoder
layer. In the last layers of the TERN architecture, the abstracted representations of
the visual and textual pipelines should be comparable. To enforce this constraint and
together apply regularization during training, we share the weights of the last layers of
the TEs before computing the matching loss Lm on the common space.

If we use only bottom-up features without any spatially related information, the vi-
sual reasoning engine is less responsive to spatial relationships. This is a fairly impor-
tant aspect to capture since lot of textual descriptions contain spatial indications (e.g.
on top of or above). In order to include spatial awareness also in the visual reasoning
process, we condition the early visual pipeline with the bounding-boxes coordinates.
To this aim, we compute the normalized coordinates and the normalized area for each
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region, as follows:

c =

{
x1

W
,
y1

W
,
x2

H
,
y2

H
,
(x2 − x1)(y2 − y1)

WH

}
. (4.3)

Then, we concatenate c with the original bottom-up feature. In the end, we forward
this information through a simple Linear-ReLU-Linear stack (sharing weights among
all the n regions) to obtain the final spatial-aware bottom-up feature.

Learning In order to match images and captions in the same common space, we use
a hinge-based triplet ranking loss, focusing the attention on hard negatives, as in [65,
125]. Therefore, we use the following loss function:

Lm(i, c) = max
c′

[α + S(i, c′)− S(i, c)]++

max
i′

[α + S(i′, c)− S(i, c)]+,
(4.4)

where [x]+ ≡ max(0, x). The hard negatives i′ and c′ are computed as follows:

i′ = arg max
j6=i

S(j, c)

c′ = arg max
d6=c

S(i,d),
(4.5)

where (i, c) is a positive pair. S is the similarity function between image and caption
features, which in our setup is the cosine similarity. As in [65], the hard negatives are
sampled from the mini-batch and not globally, for performance reasons.

Region and Word Features The I = {r0, r1, . . . , rn} and C = {w0,w1, . . . ,wm} initial
descriptions for images and captions come from state-of-the-art visual and textual pre-
trained networks, Faster-RCNN with bottom-up attention and BERT respectively.

Faster-RCNN [197] is a state-of-the-art object detector. It has been used in many
downstream tasks requiring salient object regions extracted from images. Therefore,
Faster-RCNN is one of the main architectures implementing human-like visual percep-
tion. The work in [10] introduces bottom-up visual features by training Faster-RCNN
with a ResNet-101 backbone on the Visual Genome dataset [116]. Using these features,
they can reach remarkable results on the two downstream tasks of image captioning and
visual question answering.

Concerning text processing, we use BERT [58] for extracting word embeddings.
BERT already uses a multi-layer Transformer Encoder (TE) to process words in sen-
tences and capture their functional relationships through the same powerful self-attention
mechanism. BERT embeddings are trained on some general natural language process-
ing tasks such as sentence prediction or sentence classification and demonstrated state-
of-the-art results in many downstream natural language tasks. BERT embeddings, un-
like word2vec [165] or GloVe [173], capture the context in which each word appears.
Therefore, every word embedding carries information about the surrounding context,
that could be different from caption to caption.
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4.1.4 Transformer Encoder Reasoning and Alignment Network (TERAN)

As explained in the previous paragraph, TERN processes visual and textual elements,
exploring and reasoning on the relationships among image regions and sentence words.
However, its main objective is to match images and sentences as atomic, global entities,
by learning a global representation of them inside special tokens (I-CLS and T-CLS)
processed by the Transformer Encoder (TE). This usually leads to performance loss and
possibly poor generalization since fine-grained information useful for effective match-
ing is lost during the projection to a fixed-sized common space.

For this reason, in this section, we propose an extension to TERN, called Trans-
former Encoder Reasoning and Alignment Network (TERAN) in which we force a
fine-grained word-region alignment. Fine-grained matching deals with the accurate
understanding of the local correspondences between image regions and words, as op-
posed to coarse-grained matching, where only a summarized global descriptions of the
two modalities is considered. In fact, differently from TERN, the objective function
is directly defined on the set of regions and words in output from the architecture, and
not on a potentially lossy global representation. Using this objective, TERAN tries to
individually align the regions and the words contained in images and sentences respec-
tively, instead of directly matching images and sentences as a whole. The information
available to TERAN during training is still coarse-grained, as we do not inject any
information about word-region correspondences. The fine-grained alignment is thus
obtained in a semi-supervised setup, where no explicit word-region correspondences
are given to the network.

As TERN, TERAN is built using a stack of TE layers, both for the visual and the
textual data pipelines. The TE takes as input sequences or sets of entities, and it can
reason upon these entities disregarding their intrinsic nature. In particular, we consider
the salient regions in an image as visual entities, and the words present in the caption
as textual entities.

The TERN architecture in [163] produces summarized representations of both im-
ages and words by employing special I-CLS and T-CLS tokens that are forwarded to-
wards the layers of the TEs. In the end, the processed I-CLS and T-CLS tokens gather
important global knowledge from both modalities. Contrarily, TERAN does not pro-
duce aggregated fixed-sized representations for images and sentences. For this reason,
it does not employ the global features constructed inside the I-CLS and T-CLS tokens.
Instead, it tries to impose a global matching loss defined on the variable-length sets in
output from the last TE layers that is able, as a side effect, to produce also good and
interpretable region-word alignments.

The price to pay to obtain this fine-grained alignment is that we can no more directly
rely on standard indexing techniques to scale up the search to millions of items, as the
network output in this case is no more a single vector, but instead a set of vectors, one
for each contextualized word or region. We try to handle this problem in Section 4.2,
where we introduce the Bag of Concepts model.

The TERAN architecture is shown in Figure 4.6. We left in the scheme the I-CLS
and T-CLS tokens connections for comparison with the TERN architecture. These to-
kens are still used for a targeted experiment that exploits the combination of the TERN
and TERAN losses (more details in Section 5.2.3). However, they are not used in the
main TERAN experiments. The two linear projection layers within the TE modules are
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Figure 4.6: The proposed TERAN architecture. TEs stands for Transformer Encoders. Region and
word features are extracted through a bottom-up attention model based on Faster-RCNN and BERT,
respectively. The final image-text (I-T) similarity score is obtained by pooling a region-word (R-W)
similarity matrix. Notice that the special I-CLS and T-CLS are not used in the basic formulation of
TERAN.

used to project the visual and textual concepts in spaces having the same dimension-
ality. Then, the latest TE layers perform further processing before outputting the final
features that are used to compute the final alignment loss. Differently from TERN, we
initially do not share the weights of the last TE layers. We discuss the effect of weight
sharing in our ablation study (Section 4.1.7).

In our novel TERAN architecture, the features in output from the last TE layers
are used to compute a region-word alignment matrix A ∈ R|gk|×|gl|, where gk is the
set of indexes of the region features from the k-th image and gl is the set of indexes
of the words from the l-th sentence. We use the cosine similarity for measuring the
affinity between the i-th region and the j-th word. If {vi} and {sj} are the sets of
contextualized region and word vectors in output from the network for the k-th image
and the l-th sentence respectively, then A is constructed as:

Aij =
v>i sj
‖vi‖‖sj‖

i ∈ gk, j ∈ gl (4.6)

At this point, the global similarity Skl between the k-th image and the l-th sentence
is computed by pooling this similarity matrix through an appropriate pooling func-
tion. Inspired by [109] and [122], we employ the max-sum pooling, which consists
in computing the max over the rows of A and then summing or, equivalently, max-
over-regions sum-over-words (MrSw) pooling. We explore also the dual version, as in
[122], by computing the max over the columns and then summing, or max-over-words
sum-over-regions (MwSr) pooling:

SMrSw
kl =

∑

j∈gl

max
i∈gk

Aij or SMwSr
kl =

∑

i∈gk

max
j∈gl

Aij (4.7)
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Since both these similarity functions are not symmetric due to the diverse outcomes
we obtain by inverting the order of the sum and max operations, we introduce also the
symmetric form, obtained by summing the two:

SSymm
kl = SMrSw

kl + SMwSr
kl (4.8)

Learning Given the global image-sentence similarities Skl computed through align-
ments pooling, we can proceed as in TERN as well as in previous works [65, 125],
using the contrastive learning method with emphasis on hard negatives:

Lkl = max
l′

[α + Skl′ − Skl]++

max
k′

[α + Sk′l − Skl]+
(4.9)

where [x]+ ≡ max(0, x) and α is a margin that defines the minimum separation that
should hold between the truly matching word-region embeddings and the negative
pairs; k′ and l′ are the hard negative examples.

4.1.5 Experimental Setup

We trained the TERN and TERAN architectures and we measured their performance on
the MS-COCO [134] and Flickr30k datasets [248], computing the effectiveness of our
approach on the image retrieval and sentence retrieval tasks. We compared our results
against state-of-the-art approaches on the same datasets, using the introduced NDCG
and the already-in-use Recall@K metrics.

The MS-COCO dataset comes with a total of 123,287 images. Every image has
associated a set of 5 human-written captions describing the image. We follow the splits
introduced by [109] and followed by the subsequent works in this field [65, 77, 125].
In particular, 113,287 images are reserved for training, 5,000 for validating, and 5,000
for testing. Differently, Flickr30k consists of 31,000 images and 158,915 English texts.
Like MS-COCO, each image is annotated with 5 captions. Following the splits by
[109], we use 29,000 images for training, 1,000 images for validation, and the remain-
ing 1,000 images for testing. For MS-COCO, at test time the results for both 5k and 1k
test-sets are reported. In the case of 1k images, the results are computed by performing
5-fold cross-validation on the 5k test split and averaging the outcomes.

We computed the relevance scores for the NDCG metric using ROUGE-L[133] and
SPICE[9], as explained in Section 4.1.2, and we set the NDCG parameter p = 25
as in [41] in our experiments. We employed the NDCG metrics measured during the
validation phase for choosing the best performing model to be used during the test
phase.

Implementation Details We employ the BERT model pre-trained on the masked lan-
guage task on English sentences, using the PyTorch implementation by HuggingFace1.
These pre-trained BERT embeddings are 768-D. For the visual pipeline, we extracted
the bottom-up features from the work by [10], using the code and pre-extracted features
provided by the authors2. Specifically, for MS-COCO we used the already-extracted

1https://github.com/huggingface/transformers
2https://github.com/peteanderson80/bottom-up-attention
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bottom-up features, while we extracted from scratch the features for Flickr30k using
the available pre-trained model. In the experiments, we used the bottom-up features
containing the top 36 most confident detections, although our pipeline already handles
variable-length sets of regions for each image by appropriately masking the attention
weights in the TE layers. Concerning the reasoning steps, we used a stack of 4 TE
layers for visual reasoning. We found the best results when fine-tuning the BERT pre-
trained model, so we did not add further reasoning TE layers for the textual pipeline.
The final common space, as in [65], is 1024-D. We linearly projected the visual and
textual features to a 1024-D space and then we processed the resulting features using 2
final TEs before computing the alignment matrix. All the TEs feed-forward layers are
2048-dimensional and the dropout is set to 0.1. We trained for 30 epochs using Adam
optimizer with a batch size of 40 and a learning rate of 1e−5 for the first 20 epochs and
1e−6 for the remaining 10 epochs. The α parameter of the hinge-based triplet ranking
loss is set to 0.2, as in [65, 125].

4.1.6 Results

We compare our methods against the following baselines: JGCAR [228], SAN [97],
VSE++ [65], SMAN [99], M3A-Net [98], AAMEL [231], MRNN [109], SCAN [122],
SAEM [235], CASC [239], MMCA [232], VSRN [125], PFAN [230], Full-IMRAM
[43], and CAMERA [187]. We clustered these methods based on the visual feature
extractor they use: VGG, ResNet, or Region CNN (e.g., Faster-RCNN). To obtain a
better comparison with our method, we also annotated in the tables whenever they
use BERT as the textual model, or if they use disentangled visual-textual pipelines
for efficient feature computation. For better comparing with TERAN with TERN, we
included three more targeted experiments. In the first two, called TERN MwSr Test
and TERN MrSw Test we used the best-performing TERN model, trained as explained
in Section 4.1.3, testing it using the MwSr and MrSw alignments criteria respectively.
TERN is effectively able to output features for every image region or word; however,
it is never constrained to produce meaningful descriptions out of these sets of features;
hence, this experiment is aimed at checking the quality of the alignment of the concepts
in output from the previous TERN architecture. In the third experiment, called TERN w.
Align, we tried to integrate the objectives of both TERN and TERAN during training,
by combining their losses using the uncertainty weighting method proposed in [110],
and testing the model using the TERN inference protocol. Thus, in this experiment,
we effectively reuse the I-CLS and T-CLS tokens as global descriptions for images
and sentences, as described in Section 4.1.3. This experiment aimed to evaluate if the
TERAN alignment objective can help TERN learn better fixed-sized global vectorial
descriptions. Also notice that many of the listed methods report the results using an
ensemble of two models having different training initialization parameters, where the
final similarity is obtained by averaging the scores in output from each model. Hence,
we reported also our ensemble results, for a better comparison with these baselines. In
the tables, we indicate ensemble methods postponing (ens.) to the method name. We
used the original implementations from their respective GitHub repositories to compute
the NDCG metrics for the baselines, where possible. In the case of missing pre-trained
models, we were not able to produce consistent results with the original papers. In this
case, we do not report the NDCG metrics.
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Image Retrieval Sentence Retrieval

Recall@K NDCG Recall@K NDCG

Model K=1 K=5 K=10 ROUGE-L SPICE K=1 K=5 K=10 ROUGE-L SPICE

(VGG)
JGCAR [228] 40.2 74.8 85.7 - - 52.7 82.6 90.5 - -
SAN [97] 60.8 90.3 95.7 - - 74.9 94.9 98.2 - -

(ResNet)
VSE++ [65] † 52.0 84.3 92.0 0.712 0.617 64.6 90.0 95.7 0.705 0.658
SMAN [99] 58.8 87.4 93.5 - - 68.4 91.3 96.6 - -
M3A-Net [98] 58.4 87.1 94.0 - - 70.4 91.7 96.8 - -
AAMEL [231] 59.9 89.0 95.1 - - 74.3 95.4 98.2 - -

(Region CNN)
MRNN [109] 27.4 60.2 74.8 - - 38.4 69.9 80.5 - -
SCAN (ens.) [122] 58.8 88.4 94.8 - - 72.7 94.8 98.4 - -
SAEM (ens.)[235] §† 57.8 88.6 94.9 - - 71.2 94.1 97.7 - -
CASC [239] 58.9 89.8 96.0 - - 72.3 96.0 99.0 - -
MMCA [232] § 61.6 89.8 95.2 - - 74.8 95.6 97.7 - -
VSRN [125] † 60.8 88.4 94.1 0.723 0.621 74.0 94.3 97.8 0.737 0.690
VSRN (ens.) [125] † 62.8 89.7 95.1 0.732 0.637 76.2 94.8 98.2 0.748 0.704
PFAN (ens.) [230] 61.6 89.6 95.2 - - 76.5 96.3 99.0 - -
Full-IMRAM [43] 61.7 89.1 95.0 - - 76.7 95.6 98.5 - -
CAMERA [187] §† 62.3 90.1 95.2 - - 75.9 95.5 98.6 - -
CAMERA (ens.) [187] §† 63.4 90.9 95.8 - - 77.5 96.3 98.8 - -

TERN 51.9 85.6 93.6 0.725 0.653 63.7 90.5 96.2 0.716 0.674
TERN MrSwTest 51.5 84.9 93.1 0.722 0.642 26.6 70.3 86.3 0.568 0.530
TERN MwSrTest 51.2 84.6 92.9 0.722 0.643 61.9 88.9 95.7 0.713 0.666
TERN w. Align 54.5 86.9 94.2 0.724 0.643 65.5 91.0 96.5 0.720 0.675

TERAN Symm. 63.5 91.1 96.3 0.739 0.666 76.3 95.3 98.4 0.741 0.701
TERAN MwSr 57.5 88.4 94.9 0.730 0.658 70.8 93.5 97.3 0.725 0.681
TERAN MrSw 65.0 91.2 96.4 0.741 0.668 77.7 95.9 98.6 0.746 0.707
TERAN MrSw (ens.) 67.0 92.2 96.9 0.747 0.680 80.2 96.6 99.0 0.756 0.720

Table 4.1: Results on the MS-COCO dataset, on the 1k test set.
§ Uses BERT as language model
† Uses disentangled visual-textual pipelines
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Image Retrieval Sentence Retrieval

Recall@K NDCG Recall@K NDCG

Model K=1 K=5 K=10 ROUGE-L SPICE K=1 K=5 K=10 ROUGE-L SPICE

(ResNet)
VSE++ [65] † 30.3 59.4 72.4 0.656 0.577 41.3 71.1 81.2 0.597 0.551
M3A-Net [98] 38.3 65.7 76.9 - - 48.9 75.2 84.4 - -
AAMEL [231] 39.9 71.3 81.7 - - 51.9 84.2 91.2 - -

(Region CNN)
MRNN [109] 10.7 29.6 42.2 - - 16.5 39.2 52.0 - -
SCAN (ens.) [122] 38.6 69.3 80.4 - - 50.4 82.2 90.0 - -
VSRN [125] † 37.9 68.5 79.4 0.676 0.596 50.3 79.6 87.9 0.639 0.598
VSRN (ens.) [125] † 40.5 70.6 81.1 0.684 0.609 53.0 81.1 89.4 0.652 0.612
Full-IMRAM [43] 39.7 69.1 79.8 - - 53.7 83.2 91.0 - -
MMCA [232] § 38.7 69.7 80.8 - - 54.0 82.5 90.7 - -
CAMERA [187] §† 39.0 70.5 81.5 - - 53.1 81.3 89.8 - -
CAMERA (ens.) [187] §† 40.5 71.7 82.5 - - 55.1 82.9 91.2 - -

TERN 28.7 59.7 72.7 0.665 0.599 38.4 69.5 81.3 0.601 0.556
TERN MrSwTest 28.3 59.1 72.2 0.663 0.592 6.8 28.4 46.7 0.406 0.372
TERN MwSrTest 28.1 58.6 71.8 0.663 0.592 35.5 67.5 78.9 0.600 0.551
TERN w. Align 31.4 62.5 75.3 0.667 0.597 40.2 71.1 81.9 0.606 0.561

TERAN Symm. 41.0 71.6 82.3 0.680 0.607 54.8 82.7 90.9 0.641 0.601
TERAN MwSr 34.1 65.7 77.8 0.669 0.596 45.3 76.3 86.2 0.611 0.564
TERAN MrSw 42.6 72.5 82.9 0.682 0.610 55.6 83.9 91.6 0.643 0.606
TERAN MrSw(ens.) 45.1 74.6 84.4 0.689 0.622 59.3 85.8 92.4 0.658 0.624

Table 4.2: Results on the MS-COCO dataset, on the 5k test set.
§ Uses BERT as language model
† Uses disentangled visual-textual pipelines

Although TERN can not compete with current state-of-the-art architectures as far
as Recall@K metric is concerned, it can challenge other very efficient methods like
VSE++ or VSRN in terms of NDCG. Due to the high-level abstraction nature of the
SPICE relevance, this result confirms the ability of TERN to understand complex pat-
terns and abstract concepts both in the visual and textual inputs. On both the 1k and 5k
test sets, the TERAN approach reaches state-of-the-art results on almost all the metrics.
Concerning the results reported in Table 4.1 regarding 1k test set, the best performing
TERAN model is the one implementing the max-over-regions sum-over-words (MrSw)
pooling method, although the model using the symmetric loss reaches comparable re-
sults. We chose the same TERAN MrSw model to evaluate the ensemble, reaching
an improvement of 5.7% and 3.5% on the Recall@1 metric on image and sentence re-
trieval respectively, with respect to the best baseline using ensemble methods, which
is CAMERA [187]. Notice, however, that even the basic TERAN model without en-
semble is able to surpass CAMERA in many metrics. This confirms the power of the
TERAN model despite its overall simplicity.

Table 4.2 reports the results for the 5k test set, which confirm the superiority of
TERAN MrSw over all the baselines also on the full test set. In this scenario, we
increase the Recall@1 performance by 11.3% and 7.6% on image and sentence re-
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Figure 4.7: Validation metrics on sentence-to-image retrieval, measured during the training phase, for
the average-over-sentences scenario. TERN overfits on the NDCG metrics, while Recall@1 still
improves. TERAN instead generalizes better on both metrics.

trieval with respect to the CAMERA approach. On the other hand, the max-over-words
sum-over-regions (MwSr) method loses around 10% on the Recall@1 metrics with re-
spect to the best performing TERAN non-ensemble model. In this case, the Recall@K
metric does not improve over the top results obtained by the current state-of-the-art ap-
proaches. Nevertheless, this model loses only about 1.5% during image-retrieval and
about 3.5% during sentence-retrieval as far as the NDCG with the SPICE relevance is
concerned, reaching perfectly comparable results with our state-of-the-art method. In
light of these results, we deduce that the MwSr model is not so effective in retrieving
the exact-matching elements; however, it is still very good at retrieving the relevant
ones.

As far as image retrieval is concerned, in the TERN MwSrTest and TERN MwSrTest
experiments we can see that the TERN architecture performs fairly good when the sim-
ilarity is computed as in the novel TERAN architecture, using the region and words
outputs and not the I-CLS and T-CLS global descriptions. In particular, the use of max-
over-words sum-over-regions similarity still works quite well compared to the similar-
ity computed through I-CLS and T-CLS global visual and textual features as it is in
TERN.

Notice instead that on the sentence retrieval task, the TERN MrSw Test experiment
obtains a very low performance. This is the consequence of the fact that TERN is
trained to produce global-scale image-sentence matchings, while it is never forced to
produce meaningful fine-grained aligned concepts. This is further supported by the
evidence that if we visualize the region-words alignments as further explained in Sec-
tion 4.1.7 we obtain random word groundings on the image, meaning that the concepts
in output from TERN are not sufficiently informative.

In order to better compare TERAN with the TERN approach, in Figure 4.7 we re-
port the validation curves for both NDCG and Recall@1 metrics, for both methods. We
can notice how the NDCG metric overfits in the TERN model, especially when using
the SPICE metric, while the Recall@K keeps increasing. On the other hand, TERAN
demonstrates better generalization abilities on both metrics. This is a clear indication
that TERAN is better at retrieving relevant items in the first positions, as well as exact
matching elements. Instead, TERN is more prone to overfitting to the SPICE metric,
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Image Retrieval Sentence Retrieval

Recall@K NDCG Recall@K NDCG

Model K=1 K=5 K=10 ROUGE-L SPICE K=1 K=5 K=10 ROUGE-L SPICE

(VGG)
JGCAR [228] 35.2 62.0 72.4 - - 44.9 75.3 82.7 - -
SAN [97] 51.4 77.2 85.2 - - 67.0 88.0 94.6 - -

(ResNet)
VSE++ [65] † 39.6 70.1 79.5 0.631 0.494 52.9 80.5 87.2 0.601 0.514
TIMAM [207] §† 42.6 71.6 81.9 - - 53.1 78.8 87.6 - -
SMAN [99] 43.4 73.7 83.4 - - 57.3 85.3 92.2 - -
M3A-Net [98] 44.7 72.4 81.1 - - 58.1 82.8 90.1 - -
AAMEL [231] 49.7 79.2 86.4 - - 68.5 91.2 95.9 - -

(Region CNN)
MRNN [109] 15.2 37.7 50.5 - - 22.2 48.2 61.4 - -
SCAN (ens.) [122] 48.6 77.7 85.2 - - 67.4 90.3 95.8 - -
PFAN (ens.) [230] 50.4 78.7 86.1 - - 70.0 91.8 95.0 - -
SAEM (ens.)[235] §† 52.4 81.1 88.1 - - 69.1 91.0 95.1 - -
VSRN [125] † 53.0 77.9 85.7 0.673 0.545 70.4 89.2 93.7 0.676 0.592
VSRN (ens.) [125] † 54.7 81.8 88.2 0.680 0.556 71.3 90.6 96.0 0.688 0.606
Full-IMRAM [43] 53.9 79.4 87.2 - - 74.1 93.0 96.6 - -
MMCA [232] § 54.8 81.4 87.8 - - 74.2 92.8 96.4 - -
CASC [239] 60.2 78.3 86.3 - - 68.5 90.6 95.9 - -
CAMERA [187] §† 58.9 84.7 90.2 - - 76.5 95.1 97.2 - -
CAMERA (ens.) [187] §† 60.3 85.9 91.7 - - 78.0 95.1 97.9 - -
TERN 41.1 71.9 81.2 0.647 0.512 53.2 79.4 86.0 0.624 0.529

TERAN Symm. 55.7 83.1 89.3 0.678 0.555 71.8 90.5 94.7 0.676 0.603
TERAN MwSr 49.4 78.3 85.9 0.664 0.536 60.5 85.1 92.2 0.651 0.558
TERAN MrSw 59.5 84.9 90.6 0.686 0.564 75.8 93.2 96.7 0.687 0.614
TERAN MrSw (ens.) 63.1 87.3 92.6 0.695 0.577 79.2 94.4 96.8 0.707 0.636

Table 4.3: Results on the Flickr30k dataset.
§ Uses BERT as language model
† Uses disentangled visual-textual pipelines

meaning that at a certain point in training, the network still searches for the top match-
ing element, but with a tendency to push away possible relevant results. However,
looking at the results from the TERN w. Align experiment, we can notice that by aug-
menting the TERN objective with the TERAN alignment loss, we can slightly increase
the TERN overall performance. This confirms that a more precise and meaningful
region-word alignment works as a nice regularization term, that has a visible effect on
the quality of the fixed-sized global embeddings.

In Table 4.3 we report the results on the Flickr30k dataset. Our single-model TERAN
MrSw method outperforms the best baseline (CAMERA) on the image retrieval task
while approaching the single-model CAMERA performance on the sentence retrieval
task. Nevertheless, even on Flickr30k our TERANMrSw method with model ensemble
obtains state-of-the-art results with respect to all the baselines on all the metrics, gain-
ing 4.6% and 1.5% on the Recall@1 metric on the image and sentence retrieval tasks
respectively.
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On the MS-COCO dataset, our system powered by a single GTX 1080Ti can com-
pute a single image-to-sentence query in ∼ 0.12s on 5k sentences of the test split;
in the sentence-to-image scenario, it can produce scores and rank the 1k images in
∼ 0.02s. Although the TERAN features are not directly indexable using standard
vector indexes, these timings allow TERAN to be effectively used, for example, in a
re-ranking phase, where the first items have been previously retrieved using a faster
descriptor (e.g., TERN).

Qualitative Analysis for Image Retrieval The visualization of image retrieval results is a
good way to qualitatively appreciate the retrieval abilities of the proposed TERAN
model. Figures 4.8 and 4.9 show examples of images retrieved given a textual cap-
tion as a query, with scores computed using the max-over-regions sum-over-words
method. In particular, Figure 4.8 shows image retrieval results for a couple of non
specific query captions. The red-marked images represent the exact-matching elements
from the ground-truth. The retrieved images in these examples are incorrect results
for the Recall@1 metric (and for the first query even for Recall@5). Nevertheless, in
the very first positions, we find non-matching yet relevant images, due to the ambi-
guity of the query caption. These are common examples where NDCG succeeds over
the Recall@K metric since we need a relaxed evaluation for generic query captions.
Figure 4.9 reports instead image retrieval results for a couple of very specific query
captions. For the first two queries, the network succeeds in positioning the only really
relevant image in the first position (a dog sitting on a bench on the upper query, and
Pennsylvania Avenue, uniquely identifiable by the street sign, on the lower query). In
this case, the Recall@1 metric also succeeds, given that the query captions are very
selective. The third example of Figure 4.9, instead, evidences a failure case where the
model cannot deal with very subtle details. The (only) correct result is ranked 6th in
this case; in the first ranking positions, the model can find images with a vase used as
a centerpiece, but the table is not often visible, and when it is visible, it is not in the
corner of the room.

4.1.7 Ablation Study

The Effect of Weight Sharing We tried to apply weight sharing for the last two layers of
the TERAN architecture, those after the linear projection to the 1024-D space. Weight
sharing is used to reduce the size of the network and enforce a structure able to per-
form common reasoning on the high-level concepts, possibly reducing the overfitting
and increasing the stability of the whole network. We experimented with the effects of
weight sharing on the MS-COCO dataset with 1k test set, for both the max-over-words
sum-over-regions and the max-over-regions sum-over-words scenarios. Results are
shown in the 2-nd and 6-th rows of Table 4.4. It can be noticed that the values are per-
fectly comparable with the TERAN results reported in Table 4.1, suggesting that at this
point in the network the abstraction is high enough that concepts coming from images
and sentences can be processed in the exact same way. This result shows that vectors
at this stage have been freed from any modality bias and they are fully comparable in
the same representation space. Also, in the max-over-words sum-over-regions scenario
(6-th row), there is a small gain both in terms of Recall@K and NDCG. This confirms
the slight regularization effect of the weight sharing approach.
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Query: A large jetliner sitting on top of an airport runway.

Query: An eating area with a table and a few chairs.

Figure 4.8: Example of image retrieval results for a couple of generic query captions. These are common
examples where NDCG succeeds over the Recall@K metric. The ground-truth matching image is not
among the very first positions; however, the top-ranked images are also visually very relevant.

Query: A large white dog is sitting on a bench beside an elderly man.

Query: An old black and white photo of Pennsylvania Avenue.

Query: Table situated in corner of room with a vase for a center piece.

Figure 4.9: Example of image retrieval results for a couple of very specific query captions.

Averaging Versus Summing We tried to compute the average instead of the sum during
the last pooling phase of the alignment matrix. We consider only the case in which we
average-over-sentences; in fact, since in our experiments the number of visual concepts
is always fixed to the 36 more influent ones during the object detection stage, average-
over-regions and sum-over-regions do not differ substantially. Thus, we considered the
case of max-over-regions average-over-words (MrAvgw):

Skl =

∑
j∈gl

maxi∈gk
Aij

|gl|
. (4.10)

If we compute the average instead of the sum in the max-over-regions sum-over-words
scenario, the final similarity score between the image and the sentence is no more de-
pendent on the number of concepts from the textual pipeline: the similarities are aver-
aged and not accumulated. In the 3-rd row of Table 4.4 we can notice that by averaging
we lose an important amount of information with respect to the max-over-regions sum-
over-words scenario (1-st row). This insight suggests that the complexity of the query
is beneficial for achieving high-quality matching. Another side effect of using average
instead of the max is the premature clear overfitting on the NDCG metrics as far as
image-retrieval is concerned. The effect is shown in Figure 4.10. The clear overfitting
of the NDCG metrics resembles the training curve trajectories of TERN (Figure 4.7).
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Figure 4.10: Validation metrics measured during the training phase, for the average-over-sentences
scenario. This model overfits on the NDCG metrics on the image-retrieval task, while Recall@1 still
improves.

This result demonstrates that although this model can correctly perform exact match-
ing, it is pulling away relevant results from the head of the ranked list of images, during
the validation phase.

Image Retrieval Sentence Retrieval

Recall@K NDCG Recall@K NDCG

Model K=1 K=5 K=10 ROUGE-L SPICE K=1 K=5 K=10 ROUGE-L SPICE

MrSw (Table 4.1) 65.0 91.2 96.4 0.741 0.668 77.7 95.9 98.6 0.746 0.707
MrSw Shared-W 64.5 91.3 96.3 0.740 0.667 77.3 95.9 98.4 0.746 0.706
MrAvgw 57.2 87.6 93.6 0.705 0.587 68.6 92.4 96.7 0.721 0.671
MrSw
StopWordsFilter

64.2 91.1 96.3 0.737 0.658 76.8 95.9 98.6 0.745 0.705

MrSw Bi-LSTM 55.6 86.9 93.9 0.734 0.666 67.4 92.5 96.9 0.717 0.677
MrSw Bi-GRU 56.3 87.1 94.0 0.735 0.666 69.1 93.4 97.1 0.720 0.678

MwSr (Table 4.1) 57.5 88.4 94.9 0.730 0.658 70.8 93.5 97.3 0.725 0.681
MwSr Shared-W 58.1 88.4 95.0 0.730 0.657 71.1 93.1 97.7 0.728 0.683

Table 4.4: Results for the ablation study experiments. We organize the methods in the table clustering
them by the pooling method, for an easier comparison (max-over-regions methods in the upper part
and max-over-words methods on the lower part). In the first row of both sections we report the
TERAN results from Table 4.1. Experiments are computed on the MS-COCO dataset, 1k test set.

Removing Stop-Words During Alignment Some words may carry no substantial meaning
by themselves, such as articles or prepositions. These words with a high and diffuse
frequency of use are typically called stop-words and are usually removed in classical
text analysis. In this context, removing stop-words may help the architecture to focus
only on the important concepts. Doing so, the training process is simplified as the noise
introduced by possibly irrelevant words is removed. Results are reported in the 4-th
row of Table 4.4. The overall performance, both in terms of Recall@ and NDCG is
comparable, yet with a small decrease, with the one obtained without stop-words re-
moval (1-st row of the table). This suggests that in this context stop-words are linguistic
elements that bring some useful information to distinguish ambiguous scenes. Prepo-
sitions and adverbs often indicate the spatial arrangement of objects, thus "chair near
the table" is not the same as "chair over the table". Distinguishing these fine-grained
differences is beneficial for obtaining a precise image-text matching.
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Figure 4.11: Visualization of the word-region alignments. Near each word, we report the cosine simi-
larity computed between that word and the top-relevant image region associated with it. We slightly
offset the overlapping bounding-boxes for a better visualization.

Using Different Language Models Despite the power of BERT [58] for obtaining contex-
tualized representations for the words in a sentence, many works use recurrent bidirec-
tional networks instead, such as Bi-GRU or Bi-LSTMs. In the 5-th and 6-th row of
Table 4.4 we report the results for the TERAN model with Bi-GRU and Bi-LSTM in
substitution of the BERT model for language processing. We used 300-D word em-
beddings, and a hidden size of 512 so that the final bi-directional sentence feature is
a 1024-D description; we used the same training protocol and hyper-parameters used
for the main experiments. The results suggest that BERT is an essential ingredient for
reaching top results on the Recall@K metrics, especially when K={1, 5}. In particular,
Bi-LSTM and Bi-GRU lose around 14% on image retrieval and 12% on sentence re-
trieval on the Recall@1 metric compared to the TERAN MrSw single-model method.
However, we can notice that TERAN with these recurrent language models still main-
tains a comparable performance with respect to the NDCG metric, especially on the
image retrieval task.

Visualizing the Visual-Word Alignments Inspired by the work in [109], we try to visualize
the region-word alignments learned by TERAN on some images from the test set of
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MS-COCO dataset. We recall that no supervision was used at the region-word level
during the training phase. In Figure 4.11, we report some figures where every sentence
word has been associated with the top-relevant image region. The affinity between vi-
sual concepts (region features) and textual concepts (word features) has been measured
through cosine similarity, just as during the training phase. We can see that the words
have overall plausible groundings on the image they describe. Some words are really
difficult to ground, such as articles, verbs, or adjectives. However, we can notice that
phrases describing a visual entity and composed of nouns with the related articles and
adjectives (e.g. "a green tie", or "a wooden table") are often grounded to the same
region. This further confirms that the TERAN architecture can produce meaningful
concepts, and it is also able to cluster them under the form of complete reasonable
phrases. We can notice some wrong word groundings in the images, such as the phrase
"eyes closed" that is associated with the region depicting the closed mouth. In this case,
the error seems to lie on some localized misunderstanding of the scene (in this case the
noun "eyes" has probably been misunderstood since the mouth and the eyes are both
closed). Overall, however, complex scenes are correctly broken down into their salient
elements, and only the key regions are attended.

4.2 Towards Large-scale Cross-modal Retrieval

The results presented so far addressed the effectiveness of image-to-text and text-to-
image retrieval scenarios. In this paragraph we discuss some methods for scaling up
this research to possibly millions of images or sentences. In particular, we try to sparsify
and quantize the TERN features so that it is possible to use them in text-based indexing
engines, using Surrogate Text Representation (STR).

4.2.1 Surrogate Text Representation (STR)

There are many possibilities to index a vectorial representation for efficiently perform-
ing KNN search. Although there are many efficient libraries for efficient retrieval in
vector spaces, like FAISS3, recent approaches [70, 6] proposed to use off-the-shelf text-
based indexing tools, transforming a real-valued vector into a textual representation.
The latter approach has the enormous advantage of exploiting already-implemented
very efficient text-based indexing engines, which are nowadays very stable and effec-
tive for searching using the vector space document representation model [47].

The approach used in [70, 6, 40] to generate a document from a real-valued vectorial
representation is called Surrogate Text Representation (STR). The STR of an object
is a space-separated concatenation of some alphanumeric codeword selected from a
pre-defined dictionary. The concept is quite simple: the original vector x ∈ Rn is
transformed into a positive-integer vector z ∈ Nn by using a certain function f , such
that z = f(x). Given a set of symbols {τ1, τ2, . . . , τn}, the textual document STRf (x)
for the input feature x is obtained considering the i-th integer value of z = f(x) as
the term frequency of the codeword τi. For example, given z = f(x) = [3, 0, 1, 2]
and a codebook {τ1 = "A", τ2 = "B", τ3 = "C", τ4 = "D"}, we have that STRf (x) =
”A A A C D D”. In this way, the text engine creates an internal representation of this
document by counting the number of occurrencies of each word — the term frequencies

3https://github.com/facebookresearch/faiss
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Figure 4.12: The output from the TERN and TERAN architecture consists of both global features sum-
ming up whole images and whole sentences, as well as contextualized concepts lying in the same
common space.

— and it uses the well-known TF scheme and the document vector model for easily and
efficiently compute dot product similarities.

Given the above described method, there are possible choices of f for perform-
ing the real-to-positive-integer vector transformation. Ideally, f should be (a) order-
preserving, so that the ranked results do not change when the document STRf (x) is
used instead of the original vector x, and (b) sparsifying, which means that the result-
ing vector z should be sparse, so that every document does not contain all the symbols.

From this point on, we take for granted the Surrogate Text Representation procedure,
and we focus on the possibilities we have for implementing f . The first one deals with
the sparsification of the v̄i and s̄j global vectors (the ones from TERN) for images and
sentences respectively, using approaches like deep permutations [3] or scalar quantiza-
tion [6]. The second possibility concerns the use of the fine-grained concepts extracted
from the image regions Ii and the sentence words Sj (the ones from TERAN). In par-
ticular, to handle the set of TERAN vectors, we propose to construct a Bag-of-Concepts
(BoC) model, where images and sentences are described as sets of elementary compo-
nents. This model can be used to create a sparse description of images and sentences
over a fixed-sized dictionary of reference concepts. Following, we describe in detail
these two methodologies.

4.2.2 Dealing with Global Descriptions

The 1024-D vectors v̄i and s̄j describing whole images and sentences can be trans-
formed into a suitable vector indexable with inverted lists by applying the procedures
described by [3, 6]. Inverted lists and surrogate text representation need and sparse and
quantized representations, as they work with frequencies of appearance of terms in a
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Figure 4.13: Scalar quantization and deep permutation approaches for producing integer-valued vec-
tors, on a toy 8-D input vector.

dictionary. Both the scalar quantization and the deep permutation approaches try to
obtain such representations from dense vectors of real numbers produced by DNNs.

Specifically, in the deep permutation approach every feature vector v ∈ Rn is trans-
formed by sorting the indexes of the elements of v in descending order with respect
to the corresponding element values. In this way, we can construct the permutation
Πv = [Πv(1), . . . ,Πv(n)] of the feature vector v with respect indexes {1, ldots, n}
such that:

∀i = 1, . . . , n− 1, v(Πv(i)) ≥ v(Πv(i+ 1)), (4.11)

where v(j) is the j-th element of v. For example, if we have v = [0.2, 0.4, 0.1, 0.3, 0.6]
the resulting permutation vector would be Πv = [5, 2, 4, 1, 3].

On the other hand, the scalar quantization approach applies the following transfor-
mation to the original feature vector: v → bsvc, where s is a scale factor and b·c is the
floor operation.

Notice that these representations are as dense as the original feature vectors, while
inverted indexes need sparse representations to be efficient. For this reason, we spar-
sify the vectors obtained with deep permutation and scalar quantization approaches by
keeping only the first z higher values, while forcing all the others to be zero, as in [6].
A graphical representation for this two methods is shown in Figure 4.13. Notice that
in the original formulation, the scalar quantization method keeps the vector compo-
nents higher than a certain value 1/γ; in this work, for an easier comparison as well as
for a major control over the number of zeroed-out dimensions, we act as in the deep
permutation by keeping the top-K active dimensions.

In both cases, we measure the similarity between the transformed vectors using the
standard cosine similarity.
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4.2.3 The Bag-of-Concepts Model

Although the research of indexing methods for sets of concepts deserves more atten-
tion, this novel method opens the doors to some interesting applications in large-scale
cross-modal retrieval. In fact, a descriptor having each dimension carrying the grade of
presence of each abstract concept would enable fine-grained control on the retrieval. It
would be possible, for example, to weight differently the many words of the sentence
to move attention on certain nouns or verbs, at query time. The Bag-of-Concepts (BoC)
model is aimed at moving the first steps in this direction.

The TERN architecture provides us a set of concepts describing images and sen-
tences. In the case of images, every salient region carries a concept, while for sentences
the concepts are associated with single words. We are given a variable set of concepts
Ii for every image i, and a variable sequence of concepts Sj for every sentence j. The
key idea is to produce a codebook of concepts so that both images and sentences can
be described as a set of codewords drawn from a common dictionary.

The codebook can be produced by collecting a large amount of visual and textual
concepts from the training set and then performing clustering as in the standard Bag
of Visual Words model. For this reason, we produce a large set of mixed visual and
textual concepts:

C =
⋃

i

Ii ∪
⋃

j

Sj (4.12)

We downsample C so that |C| ' 100k concepts.
At this point, k-means is used to produce p clusters. The p centroids represent our

codebook of concepts. Given that the word and the visual word spaces correspond, it
is also possible to create a common codebook by using only the textual words from all
the sentences. If we follow this methodology, we can consider the top p most common
words appearing in all the Sj of the training set that are also present in the English
dictionary and which are not stop-words.

Given this codebook, it is possible to produce the proper encoding for the images
and sentences by describing them using the degree of presence of each concept from
this dictionary. In the following discussion, we refer to the set of concepts Ii coming
from images, although the same holds symmetrically for the set of concepts Sj from
sentences. There are two possible paths for accomplishing this objective: the hard and
the soft assignment methods.

Hard assignment If we use hard assignment, we can proceed as follows: given the set
of concepts {vk}k∈1...n from an image4, we can encode the image by finding, for every
concept vk, the index of the nearest centroid (using L2 distance). Thus, in output, we
obtain a set of k codewords Ĩ = {ṽk}k∈1...n, where every element ṽk of this set is no
more a 1024-D vector but an integer representing the index of the nearest centroid. The
final representation for the image is obtained by computing the histogram h over the
integer values contained in Ĩ. The histogram h has p buckets and it is therefore a p-
dimensional vector. It is already very sparse, with a maximum number n of non-zero
elements, where n� p.

4Again, we consider an image for simplicity, but this procedure remains valid if we symmetrically consider sentences.
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Figure 4.14: Overview of the Bag of Concept (BoC) model, in the case of image concepts inference.
Both soft and hard assignment versions of BoC obtain fixed-sized descriptions from sets of possi-
bly contextualized regions extracted from the image. Notice that hard assignment already produces
highly sparsified and discretized vectors.

Soft assignment The hard assignment methodology performs heavy approximations on
the original concept vectors, due to the discretization phase that transforms a 1024-
D vector to a single discrete codeword. We use the soft assignment methodology to
mitigate this problem. Given an image, soft assignment is performed by replacing the
1024-D vector for the k-th concept vk with a p-dimensional vector of distances com-
puted against all the p centroids. In this way, we preserve the information regarding all
the distances between every concept and all the centroids. The result of this operation
is a matrixD of L2 distances with shape n× p. We convert L2 distances to similarities
by applying the common transformation S = 1

1−D . In order to produce a fixed-length p
vector a describing the image we can aggregate the columns of S, thus constructing a
as ak = Hl(Slk), where Hl(·) is a symmetric aggregation function over the index l. An
example of the overall inference procedure in the case of an image is reported in Fig-
ure 4.14. In our setup we experiment with both max and sum aggregation functions.
By using sum we are summing together the similarity contributions for each image
concept with respect to a certain centroid. If all the image concepts are near a given
centroid the sum is very high, meaning that probably that particular concept is highly
present in the image. Instead, if we employ max, we gather information only from the
nearest image concept for each given centroid. In this case, the maximum concept sim-
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MS-COCO (5k images, 25k sentences) Flickr30k (10k images, 50k sentences)

Image Retrieval Sentence Retrieval Image Retrieval Sentence Retrieval

Model K=1 K=5 K=10 K=1 K=5 K=10 K=1 K=5 K=10 K=1 K=5 K=10

Global Features

TERN [163] 28.7 59.7 72.7 38.4 69.5 81.3 13.1 30.1 39.5 17.0 37.1 47.8
Deep Permutation 28.7 59.8 72.7 38.5 69.6 81.3 13.2 30.1 39.5 17.1 37.1 47.9
Scalar Quantization 28.7 59.8 72.7 38.4 69.6 81.3 13.1 30.1 39.5 17.0 37.1 48.0

Bag of Concepts - Hard Assignment

W/o Context (WoC) 3.5 14.0 24.2 4.0 14.7 23.1 0.8 2.9 4.9 1.1 3.9 6.1
W Context (WC) 7.5 29.9 43.6 8.3 27.3 41.4 1.4 5.5 9.3 1.8 6.2 9.5
No stop-words WoC 3.4 13.6 23.6 4.0 14.2 22.3 0.8 2.9 4.9 1.1 3.6 5.8
No stop-words WC 6.7 27.5 42.0 6.9 25.0 39.0 1.3 5.1 8.8 1.6 5.8 9.1
No stop-words WoC
(infer.)

3.1 12.8 21.8 3.7 12.9 20.9 0.8 2.7 4.5 0.9 3.0 5.0

English dict. 2.7 9.4 16.4 2.8 10.0 16.5 1.1 4.2 7.1 1.3 4.7 7.7

Bag of Concepts - Soft Assignment

MAX-aggr WoC 25.4 54.2 67.4 32.0 63.6 76.2 10.1 24.1 32.6 13.2 30.3 40.5
SUM-aggr WoC 25.7 54.5 67.4 32.7 64.4 77.0 10.3 24.7 33.1 14.1 32.5 42.5
MAX-aggr WC 26.8 57.0 70.4 35.1 65.1 77.9 10.6 25.5 34.1 14.1 32.4 42.3
SUM-aggr WC 27.2 57.4 70.4 34.9 65.9 78.4 10.7 25.8 34.4 14.6 33.1 43.5

Table 4.5: Recall@K metrics for our experiments on both MS-COCO and Flickr30k datasets

ilarity to a given centroid is low only if all the concepts are far away from that specific
centroid. The problem with soft-assignment is that the vector a is still dense and hence
very inefficient from the point of view of an inverted index. We can think of sparsifying
this vector by acting on the rows of S before computing the aggregation: for every row
of S, we keep only the z higher values, by setting to zero all the others. In the end, we
use h and the sparsified a vectors as features from the hard and soft assignment Bag of
Concepts model, and they are compared using the cosine similarity.

4.2.4 Experimental Setup

In our experiments, we evaluated the retrieval effectiveness of the produced features.
We experimented both with the I-CLS and T-CLS global features (transformed using
deep permutation or scalar quantization) and local contextualized set of features, pro-
cessed using the Bag of Concepts model. We measured the retrieval effectiveness using
the MS-COCO and Flickr30k datasets. For MS-COCO, we used the 5k test images
from the split introduced by [109], together with the associated 25k sentences. Regard-
ing Flickr30k, we sampled 10k images and the corresponding 50k sentences from the
training set, given that Flickr30k was not used for the training procedure of the TERN
feature extractor.

We used the Recall@K metric for evaluating the retrieval abilities of the collected
features. The Recall@K is employed in many previous image-text retrieval works [65,
125, 163], and it measures the percentage of queries able to retrieve the correct item
among the first k results.
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(c) Re-ranking effect with sparsity=0.99

Figure 4.15: (a) and (b): Trend of the Recall@10 metric while increasing the vector sparsity. Sparsity
is reported as the fraction of vector components that are zeroed out ( zp for BoC and z

2d for global
features, where p = 1000 and d = 1024 in our experiments). (c): Reranking results in terms of
Recall@10 varying the extended query multiplier Rm. We search for the first Rm · 10 items using
the approximated method and then we rerank them using the original feature vectors. All the charts
report the curves for both image retrieval (IR) and sentence retrieval (SR), and they are collected on
the 10k images (50k sentences) from the Flickr30k dataset.

Concerning deep permutations and scalar quantization approaches, we followed [6]:
we first pre-processed the feature by applying a CReLU operation, which concatenates
the vector to its opposite, and then we clipped all negative values to zero. In this way,
we obtained a vector containing only positive or zero integer elements. For the scalar
quantization, we used a scale of 1,000. Regarding the Bag of Concepts setup, we used
a codebook of p = 1,000 elements, either by clustering or by using the most frequent
1,000 words from the training set present also in the English dictionary.

There are little variants of the Bag of Concepts that worth exploring. Remember
that the TERN architecture produces contextualized concepts that vary among different
scenarios. If we want to avoid the contextualization effect during the clustering phase,
we can forward regions and words one at a time inside TERN, so that it is impossible for
the network to discern the different contexts. The de-contextualized scenario produces
region and word features more similar in spirit to the hand-crafted local features like
SIFT, which were highly de-contextualized. Furthermore, it is possible to exclude the
stop-words during the clustering and/or indexing phases. This is often performed to
avoid the noise produced by not-so-informative sentence words. The results of these
experiments are reported in Table 4.5.

89



i
i

“thesis” — 2022/4/26 — 18:35 — page 90 — #110 i
i

i
i

i
i

Chapter 4. Visual-Textual Matching and Retrieval

4.2.5 Results

As it can be noticed from the first three rows from Table 4.5, the application of deep
permutations and scalar quantization does not change the essence of the ranking, as
far as the features are not sparsified. This confirms the order-preserving property of
both quantization approaches in this context. Figure 4.15a and Figure 4.15b show how
the features sparsification affects the overall performances on the 10k images from
Flick30k. In particular, Figure 4.15a shows that the results begin to diverge from the
original TERN performance only when a massive sparsification is applied. In that case,
the scalar quantization method produces features which are more resilient to a strong
sparsification, both during image- and sentence-retrieval.

Overall, the Bag of Concepts model can obtain very similar performances to the
values reached by deep permutation and scalar quantization approaches, when soft-
assignment is being used. Instead, the strong sparsification put in place by the hard
assignment mechanism drastically lowers the overall effectiveness. Nevertheless, it
can be noticed that we can always improve the overall Bag of Concepts performance
by employing contextualized features. This is an important finding since it confirms
that the context is a fundamental building block for understanding complex scenes:
contextualized representations seem to have an important role even when considered as
unordered sets without any structure, exactly like in the Bag of Concepts model. Also,
it is worth noting that the exclusion of stop-words both during the clustering and the
indexing phases lowers the overall performances, indicating that they probably have a
non-negligible role in the pipeline.

When English words are used instead of the centroids from the k-means clusters, we
obtain performances worse than the non-contextualized k-means case. This happens
probably because these words natively lack context, as they are drawn from a dictio-
nary and not computed from a representative training set. In fact, they could not be
representative of the overall distribution of words in the MS-COCO dataset, although
they are chosen among the 1,000 more frequent ones.

In Figure 4.15c we report the results after the re-ranking of the first Rm ·K retrieved
elements using the original global feature vectors in output directly from TERN, where
Rm is the extended query multiplier. For example, to build the Recall@5 metrics when
Rm = 10 we first retrieve the first 5×10 = 50 elements using the approximated method,
and then we re-order them by computing the distances using the original feature vec-
tors. The features used for the approximated search are sparsified with a sparsity factor
of 0.99. The BoC with soft-assignment features cannot improve the results obtained
by the deep permutation and scalar quantization ones, in case the sparsification is not
applied (as shown in Table 4.5). However, Figure 4.15c demonstrates that in case the
sparsification factor is very high (0.99) the BoC soft-assignment features are more re-
silient and can almost bridge the performance gap with the scalar quantization features
when the reranking multiplier is progressively increased.

These results, in the end, show that the Bag of Concepts method has some interesting
potential for efficient cross-modal retrieval, and further studies need to be performed in
the direction of matching multi-modal elements as complex sets of concepts. This, in
turn, would enable interesting functionalities at query time, such as the possibility to
weight differently sentence words for having major control on the search results.
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4.3 Semantic CBIR using Visual-Textual Features

The TERN visual features are learned by mapping them in a space where nearby images
have similar textual descriptions. If the model learned the right abstraction level, the
extracted visual features probably carry high-level semantics, and they are powerful
enough to solve the so-called Semantic Content-based Image Retrieval (S-CBIR). S-
CBIR perfectly recalls what in Chapter 3 we defined as Relational Content-based Image
Retrieval (R-CBIR). From the point of view of this thesis, we can say that these two
tasks are perfectly equivalent. They both deal with high-level semantic retrieval, and
they consider not single instances or classes but a complex arrangement of entities
interconnected by abstract relationships. Nevertheless, in this section, we explicitly
refer to this image retrieval task using the Semantic prefix instead of the Relational one
to align with some literature recently developed around this promising and challenging
problem.

This section aims at closing the loop started in Chapter 3. We present some exciting
achievements obtained on R-CBIR considering real-world images while using features
learned using a cross-modal learning setup.

4.3.1 Instance vs Semantic Image Retrieval

Instance retrieval is the most studied in the recent literature. It consists of search-
ing images that depict the same instance of an object — i.e., a person or a certain
building. Thanks to this straightforward formulation, it is a well-defined task with
clear ground-truths [95, 179, 180, 188], and it has been widely studied in literature
[211, 175, 96, 94, 93, 15, 14, 74, 189, 199, 36, 219]. Instead, as stated in [22], seman-
tic retrieval is a much more challenging task for many reasons. First of all, semantic
retrieval is prone to subjective interpretations, as it aims to retrieve images belonging
to the same categories as the query. Nevertheless, an image can simultaneously pertain
to many categories, each one having a graded relevance. Furthermore, if we also con-
sider the entity-entity relationships, the problem analogously becomes finding the most
appropriate parameters to instantiate a fair scene-graph comparison. Because of this,
another important problem is the lack of fair benchmarks to evaluate S-CBIR. In prin-
ciple, we could consider an object-classification dataset and evaluate the retrieval ef-
fectiveness by employing precision and recall measures. Nevertheless, this would treat
images as simple lists of keywords, not accounting for context, entity relationships, and,
in the end, human taste. For this reason, some works [57, 21, 142] employed word tax-
onomies, such as WordNet [66], with metric learning approaches, to learn fine-grained
semantics. Only recently, textual descriptions associated with images came into play.
DEVISE [68] and HUSE [168] used pre-trained word embeddings to map visual fea-
tures to label embeddings, evaluating their effectiveness on hierarchical datasets. More
recently, many works for cross-modal retrieval processed images and natural language
text for embedding them into a common space; nevertheless, they never evaluated their
performance on CBIR, probably for the lack of a valid benchmark.

Only very recently, a novel very promising ground-truth, called Crisscrossed Cap-
tions (CxC) [172] from Google Research, has been released. It provides image similar-
ities by computing and refining similarities among the corresponding natural language
captions, offering high-level similarity scores suitable for S-CBIR. Therefore, in this
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Method mAP

Deep R-MAC 0.282
Listwise 0.285
GeM 0.287
TERN 0.303
MAC 0.311
R-MAC 0.323

(a) Results on MIRFlickr25k. Methods are ordered by
increasing mAP.

Method R@1 R@5 R@10 medr NDCG

GeM 14.1 34.8 45.7 13 0.358
R-MAC 20.4 49.1 63.7 6 0.385
VSE++ 38.8 74.2 85.2 2 0.518
VSRN 47.3 81.3 90.3 2 0.557
TERN 43.6 80.3 89.7 2 0.560

(b) Results on MS-COCO, using Crisscrossed Captions
annotations.

Table 4.6: Semantic CBIR results on MIRFlickr25k and CxC datasets.

section, we aim at quantitatively evaluating the TERN features and other visual-textual
models against this novel and promising benchmark.

4.3.2 Experimental Setup

Datasets and Evaluation Metrics In order to perform a comprehensive comparison, we
evaluate the TERN visual features on two different benchmarks. The first one is the
dataset used in [22], which proposed to use MIRFlickr25k [92] and its labels. Al-
though this dataset comprises many categories, the evaluation is performed only on la-
bel matching, and therefore in a binary relevance fashion (mAP is used). Furthermore,
for simplicity, only single-label images are used as queries. This evaluation scheme is
very restrictive for the high-level TERN features and can easily hide their actual po-
tential. For this reason, we also use the recently released Crisscrossed Captions (CxC)
[172] annotations for the MS-COCO dataset. The Crisscrossed Captions (CxC) dataset,
already introduced in Section 2.5, extends MS-COCO with semantic similarity ratings
for image-text, text-text, and image-image pairs. The rating criteria are indeed very
similar to the semantic evaluation performed in Section 4.1, except that they mixed
Universal Sentence Encoder(USE) [42] and Bag-of-Words (BoW) with Glove embed-
dings [173] for obtaining sentence similarities. For image-to-image retrieval — that
they call Semantic Image Similarity (SIS) — they use the Recall@k metric. They set
the positive threshold on the relevance score to 2.5, defined empirically by observing
the distribution of the scores. Given the availability of continuous relevance scores
between pairs of images in the CxC annotations, we additionally avoid reducing the
evaluation to a binary retrieval problem by using the NDCG metric, as already done in
Section 4.1.

Features Extraction We used the visual pipeline of the TERN architecture for extract-
ing the visual features. Concerning the baseline methods we used in the comparison,
we extracted the features using the code and the pre-trained models already available
online. All the features are compared using the cosine similarity.

4.3.3 Results

We can notice how the text-driven methods (TERN, VSRN) perform similarly to other
instance retrieval methods (like GeM or R-MAC) on the MIRFlickr25k dataset in Ta-
ble 4.6a. This is mostly due to the keyword-based image annotation of this dataset,
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which gives too coarse information about the semantics contained in the images. Al-
though this is a coarse-grained semantic dataset, TERN can still perform better than
other recent architectures specifically designed for image retrieval.

The results are visibly different when using the novel Crisscrossed Captions an-
notations for MS-COCO (Table 4.6a). The features developed for solving the instance
retrieval task here cannot handle the high-level semantics. In particular, the recent GeM
features perform worse than R-MAC features on this benchmark, confirming the claim
by [22], which states that more recent image retrieval methods — maybe focusing on
local pattern matching for maximizing the effectiveness on instance retrieval — often
perform worse in semantic retrieval. The best results are obtained by recently devel-
oped cross-modal matching models, that ground natural language texts and visual data
into the same common space. In particular, VSRN and TERN outperform VSE++, with
TERN obtaining better results on the NDCG metric.

These insights suggest that a significant effort is needed to fill the semantic gap in
image retrieval. The most critical challenge remains the design of fair benchmarks to
evaluate the semantic retrieval abilities of modern architectures. Nevertheless, TERN
performs reasonably well on the novel Crisscrossed Captions annotations; the quanti-
tative results align with the qualitative outcomes measured on the V3C1 dataset, em-
ployed in the next section to perform large-scale video retrieval. For this reason, we
redirect the reader to Section 4.4.4 for some S-CBIR qualitative results.

4.4 Application to Large-scale Video Retrieval

All the previous studies on TERN features effectiveness and resilience to sparsification
have been recently deployed on a recently-developed tool for large-scale video retrieval,
called VISIONE.

4.4.1 VISIONE and Video Browser Showdown (VBS)

VISIONE [5] is a tool for large-scale video search developed at the AIMH laboratory, at
the ISTI-CNR in Pisa, for participating in the Video Browser Showdown (VBS) annual
competition. VBS [49, 140] is an international video search competition whose aim
is to evaluate the performance of interactive video retrievals systems on the following
tasks:

• Known item search (KIS), where the objective is to retrieve an already seen video-
clip;

• Textual KIS, a variation of the KIS task where the target videoclip is not shown to
the participants; instead, only a very detailed natural language description of it is
available;

• Ah-hoc Video Search (AVS), where a very generic textual sentence is shown to
participants — for example, "A person walking near his dog on the sidewalk" —
and the objective is to find as many matching videoclips as possible.

The challenge is powered by the V3C1 dataset [32], a collection of around 1000 hours
of videos in the wild.
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Figure 4.16: VISIONE main interface.

The main interface of VISIONE is shown in Figure 4.16. The first version of the
tool, developed in 2019, was designed to face the aforementioned tasks using a mix
of off-the-shelf and novel techniques for large-scale content-based retrieval. More
in details, VISIONE is keyframe-based: it extracts relevant information from the 1M
keyframes automatically collected by the VBS organizers; then, a mix of state-of-the-
art techniques from image analysis and understanding are used to automatically extract
useful information from these keyframes (e.g., R-MAC features [219], color features,
bounding boxes and respective labels using the YOLO [195] object detector). All these
different-level vectorial descriptions of the various keyframes are indexed in Lucene5,
a text-based indexing engine, using the Surrogate Text Representation (STR) [6, 4],
together with the scalar quantization approach, both already described in Section 4.2.

VISIONE 2019 dealt with AVS and textual KIS tasks by querying the system with
the keywords extracted from state-of-the-art object detectors. However, this is a more
BoW-like model of proceeding: relationships between words is completely lost, and the
spatial and abstract interactions between actors and objects cannot be explicitly speci-
fied in the textual query. VISIONE 2019 partially solved this shortage by introducing
a novel canvas-based search tool that enabled positional queries and an interface for
constraining the number of instances for each concept.

The novel VISIONE 2021 [8] integrates the TERN visual-textual features, turning
the keyframe retrieval using natural language sentences into a straightforward task. In
particular, we use the TERN features regularized with the TERAN loss, which achieved
better Recall@K values (Table 4.1). Being real-valued features like the already-in-use
R-MAC, the TERN features can be seamlessly integrated into the 2019 system without
any substantial engineering effort. R-MAC features are only used for internal queries
(i.e., visual similarities are computed only between V3C1 keyframes). Therefore they

5https://lucene.apache.org/core/
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Figure 4.17: The VISIONE 2021 architecture.

should not be extracted on the fly from a never-seen external image. Instead, the textual
query is necessarily external since the user inputs a never seen text at query time. For
this reason, the text features must be extracted from the textual pipeline of the TERN
architecture during the online phase. The inference of the textual path is generally very
fast, requiring only a few milliseconds even without GPU acceleration. The resulting
overall architecture is shown in Figure 4.17.

4.4.2 Fine-tuning Scalar Quantization on Textual KIS and AVS

In order to be compliant with the already existing text-based indexing, we needed to
quantize and sparsify the real-valued vectors. Following the results in Section 4.2, we
used the scalar quantization approach to perform such transformation, as it was already
done for the R-MAC features. In a large-scale scenario, it is preferable to accurately
tune the parameters of the scalar quantization to obtain the best index performance
while maintaining good retrieval effectiveness. In the scalar quantization method, the
main parameter is the threshold 1

γ
, which directly controls the sparsity of the features

and, therefore, the number of posting lists accessed at query time. For the scale factor
which controls the quantization, we used s = 100. We empirically observed that the
scale factor has a limited impact on the final rankings, so we decided to omit it from
the parameter search.

Initially, we considered some of the textual queries extracted from some preliminary
logs of VISIONE. We observed that the sentences formulated by VISIONE users are
indeed very similar to the textual descriptions present in the MS-COCO and Flickr30k
datasets. Therefore, they seem to have a distribution similar to the ones that TERN
can understand (more on this in Section 4.4.3). Specifically, after a preliminary data
cleaning step, we obtained 384 natural language sentences from the logs to be used as
queries. We then measured the retrieval effectiveness of the scalar-quantized features
with respect to the original TERN ones varying γ. The retrieval effectiveness is mea-
sured using Recall@K, as we are interested in understanding the intersection between
the original TERN rankings and the ones obtained after applying scalar quantization.
We used K = 500, as the user usually ignores deeper results.

To run these experiments, we encoded the features using the Surrogate Text Repre-
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Figure 4.18: Recall@500 vs. query times. The numbers in cyan above each point denote the factor γ
used for sparsifying the features.

sentation, and we employed the Elasticsearch6 textual search engine to index them. The
results are shown in Figure 4.18. The numbers above each point in the chart represent
the scalar quantization thresholds used for each experiment run. As we can notice, the
query time increases non-linearly with respect to the factor γ. For γ > 30, the query
times easily become unworkable in real interactive search scenarios, and for even higher
thresholds, the search times become greater than the sequential search ones. This is be-
cause textual indexes are overloaded when most lists have to be accessed. For these
reasons, we were mainly interested in the half-plane of the graph satisfying γ < 28,
where query times are below 1s and recall values near 70%.

To better fix the threshold, we further considered the textual KIS task. The textual
queries, in this case, are more complex and extremely more detailed than those in the
AVS task. They are built of three separate sentences, overall describing the whole target
shot. An example:

A slow pan up from a canyon, static shots of a bridge and redrock mountain.
A river is visible at the ground of the canyon.
The bridge is a steel bridge, there is a road right to the mountain in the last shot.

We know in advance that TERN cannot handle temporal information, therefore
querying the system with the whole 3-sentences description can bring misleading re-
sults. Furthermore, in a real use case, the user very likely enters only one or two
sentences from the original full-length description, probably choosing among the more
discriminative ones. We tried to emulate this real-world scenario by feeding the system
with one, two, or three sentences to measure the resulting system effectiveness under
different scalar quantization thresholds. In particular, we had at our disposal eight dif-
ferent AVS queries from VBS 2019, with the relative ground-truth — i.e., the list of
relevant keyframes from the target shot. Given that the task is solved if we can find at
least one of the keyframes, we measured the position in the ranked list where the first
valid keyframe is found; in other words, we searched for the minimum rank for each
query. In Figure 4.19, we reported the minimum ranks averaged among all the queries.

6https://www.elastic.co/elasticsearch/
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Figure 4.19: Minimum ranks when querying the system with one, two, or three of the sentences from
the original shot description. None in the x-axis refers to the case of disabled scalar quantization
(retrieval is performed using the original vectors).

Notably, we can notice that the curves reach a minimum when the factor γ = 26.
This value corresponds to a good tradeoff position in the effectiveness-efficiency curve
in Figure 4.18. Therefore, this is the final value that we chose as a threshold for de-
ploying the text-to-image module in VISIONE. Interestingly, the scalar quantization
approach also seems to have a positive effect on the retrieval effectiveness since it can
surprisingly reach better results than original TERN features (γ = None). This highly
desirable effect can be caused by the implicit noise removal performed by zeroing out
the less relevant vector dimensions. Furthermore, Figure 4.19 suggests that the system
is better on average when feeding two out of the three sentences from the original full-
length description. This result validates our hypothesis that the full textual description
is too rich to be correctly embedded into the current TERN feature. On the other hand,
using only one of the sentences can be too simplistic.

4.4.3 Features Analysis

In this section, we briefly inspect the features learned by TERN when the inference
is performed on the data from the VBS challenge. As in the previous performance
analysis, we used 384 textual captions extracted from the VISIONE logs, together with
a subset of the visual features extracted from the keyframes of V3C1.

In Figure 4.20, we reported the PCA7 data visualization of both visual and textual
TERN features. Specifically, images are from V3C1 keyframes, while captions come
either from MS-COCO or the VISIONE logs. As we can notice, many of the MS-
COCO captions lie out of the V3C1 keyframes distribution, as many of them specifi-
cally describe a target MS-COCO image. This evidences the sensitivity of the learned
feature space to the specific application context. On the other side, the textual queries
from the VISIONE logs are more in-distribution with respect to the searched V3C1
images, probably because they are specific to a V3C1 keyframe (during KIS searches)
or general enough to lie in the middle of the distribution (AVS searches).

Similar conclusions can be drawn by visualizing the image-text and image-image
distance distributions (Figure 4.21). In this case, we considered only the captions from

7We did not report the T-SNE visualization, as it seems to capture wrong data distributions for the VISIONE queries (most
likely due to their small number with respect to the number of keyframes).
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Figure 4.20: PCA of the TERN visual and textual features from VBS and MS-COCO data. The marker
size is related to the text complexity, measured as the number of non-stopwords occurring in the
phrase (the marker size carries no information for the keyframe features).

the VISIONE logs. We can notice how the two distributions overlap, confirming that
a significant portion of textual features is embedded into the distribution defined by
the visual features. Furthermore, the fact that the image-image distance distribution is
entangled with the text-image one gives an intuitive explanation of why the Semantic
Content-based Image Retrieval (S-CBIR) introduced in Section 4.3 works nicely with
the visual features extracted from the TERN architecture.

4.4.4 Qualitative Results

In this section, we issue some targeted queries to the VISIONE browsing system us-
ing the TERN features processed as explained earlier, and we briefly comment on the
outcomes.

As a first test, we probe the system with four targeted textual sentences, reporting the
top-5 results. The queries and the respective results are reported in Figure 4.22a. We
can immediately notice that the queries are very similar considering the involved actors
— there is always one or more dogs and one or more persons. Nevertheless, the overall
formulation is very different in each query. Notably, we vary the verb between the
two actors to force very specific relationships between them; furthermore, we also vary
the number of actor instances to challenge the system with counting skills, crucial in
relational scenarios as shown in Chapter 3. Looking at the results, we can notice how
well the system can cope with all four different shades. In particular, the difference
between the first and the second query is the substitution of the verb caress with stand.
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Figure 4.21: Distance distributions for image-image and text-image using TERN features on the VBS
data.

Notice that there is a common image between these two queries; notably, it shows a
man with a woman in the background who caresses the dog while standing. Similarly,
the 3-rd query correctly captures the many dogs, while the fourth associates the running
dog in the field with a man to a dog training session, which is the place where it is most
likely to find these actors in this configuration.

Secondly, we evaluate the system by looking at the results for Semantic Content-
based Image Retrieval using the TERN features. As mentioned in Section 4.3, where we
reported some quantitative results for the semantic image similarity, the TERN features
are much more semantically expressive than low-level features like the R-MAC or the
newer GeM features, mainly forged for solving the instance retrieval task. Using the
same scalar quantized TERN and GeM features (both already indexed in VISIONE),
in Figure 4.22b, we show an example of image retrieval using these features. Given
that GeMs are best suited for instance retrieval, they can most likely retrieve low-level
matching images, like images with persons or with similar patterns in the background.
Differently, the TERN descriptors can embed very high-level information, correctly
capturing the concept of dancing people.

4.5 Persuasion Detection in Memes using Multi-modal Transformers

Although the previous sections were oriented towards effective and efficient retrieval,
in the last section of this chapter we briefly discuss another important critical real-world
use case where multi-modal Transformers could have a key role. In particular, the task
we discuss is the detection of persuasion techniques in social network images and,
more specifically, in memes. Notably, this work describes the system with which we
participated to the SemEval 2021 Task 6 challenge 8 [59], kept in conjunction with the
International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021).

Social networks play a critical role in our society. Nowadays, most of the ideas,
thoughts, and political beliefs are shared through the internet using social platforms like
Twitter, Facebook, or Instagram. Although these online services enable information to
be spread efficiently and effectively, it is non-trivial to understand if the shared contents
are free of subtle meanings altering people’s judgments.

8https://propaganda.math.unipd.it/semeval2021task6/index.html
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Query: “Two persons caress a dog”

Query: “Two persons stand with a dog”

Query: “A person takes many dogs out for a walk”

Query: “A dog is running in the field with a person”

(a) Text-to-Image Retrieval.

GEM Features

Query Image

TERN Features

(b) Image-to-Image Retrieval.

Figure 4.22: Qualitative results from (a) four different textual queries and (b) an image query. Only the
top-5 images are shown, for ease of viewing.
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Figure 4.23: An example of meme with evident causal oversimplification, loaded language to catch more
attention, and built on top of dialogues from a very popular film with famous actors to acquire even
more strength. The added dialogues, however, perfectly fit the facial expressions of the actors and
the overall context of the scene.

Among all the types of content living in a social network, memes acquire a signif-
icant role. Memes are small yet effective units of information able to spread cultural
ideas, symbols, or practices and usually exist under the form of pictures, possibly with
overlayed text. An example is shown in Figure 4.23. Memes are created so that they
can propagate rapidly and reach a large number of users; for this reason, they are one of
the most popular types of content used in an online disinformation campaign, influenc-
ing the users through several rhetorical and psychological techniques, such as causal
oversimplification, name-calling, or smear. The automatic detection of these memes
and the disinformation techniques they are possibly employing is a challenging yet cru-
cial task for the proper management of a social network. All the milestones reached in
the last few years in automatic content extraction and reasoning from multimedia data
acquire a fundamental role in large-scale analysis of social networks.

In this work, we tackle the problem of recognizing which kind of disinformation
technique is used to forge memes for a disinformation campaign. In particular, we pro-
pose an architecture based on the Transformer architecture model [220] for processing
both the textual and visual inputs from the meme. This architecture, which we call
DVTT (Double Visual Textual Transformer), comprises two full Transformer networks
working respectively on images and texts; however, each of these Transformers is con-
ditioned on the other modality. We consider this task as a multi-label classification
problem, where text and/or images from the meme are processed, and probabilities of
presence of each possible persuasion technique are returned as a result.
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Figure 4.24: The proposed architectures: (a) the Visual-Textual Transformer Encoder model (VTTE)
used as a baseline, and (b) the novel Double Visual Textual Transformer model (DVTT). The shown
meme is taken from https://engineermemes.blogspot.com, and it is licensed under the
Creative Common license.

We tackle subtasks 1 and 3 of the SemEval 2021 Task 6 challenge [59]. Subtask 1
consists of identifying which of 20 possible persuasion techniques are used in it given
only the textual content; subtask 3 is very similar to subtask 1, but both textual and
visual contents of the meme are used, and there are 22 possible persuasion techniques.
Our proposed models could reach the 5th position for subtask 1 and the 4th position for
subtask 3 on the publicly available leaderboard. The code for replicating our results is
available on GitHub9.

4.5.1 Double Visual-Textual Transformer

Mainstream multi-modal Transformers employ the Transformer Encoder (TE) to jointly
process image patches and words [145, 184, 215]. Inspired by these models, we initially
defined a baseline model which jointly feeds image patches from the meme and the
words from the text to a TE. An overview of this approach is presented in Figure 4.24a.
We refer to this baseline as VTTE (Visual-Textual Transformer Encoder).

In this work, instead, our main proposal consists of an architecture that can exploit
the full Transformer architecture to jointly reason on visual and texts and producing
label probabilities as output. We call this model DVTT (Double Visual Textual Trans-
former). DVTT is composed of two different Transformer networks able to process
visual and textual inputs concurrently. The important aspect of DVTT is that each
Transformer is conditioned on the other modality so that it is possible for the whole ar-
chitecture to jointly reason on the two modalities following two different paths: in the
first, the text is the key aspect, and images integrate the reasoning performed on the text;
conversely, in the second, the images are the primary modality and the text intervene to
enrich the visual features. The DVTT architecture is shown in Figure 4.24b.

9https://github.com/mesnico/MemePersuasionDetection
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4.5. Persuasion Detection in Memes using Multi-modal Transformers

For each of the two Transformers, the final head is a multi-classification head con-
structed on the first token of the output sequence. In particular, a linear layer outputs the
logits over each possible persuasion technique, and the final softmax operator converts
logits into probabilities, exactly like in the VTTE baseline model. The two Transform-
ers outputs are merged by averaging the inferred probabilities for each possible label,
and the overall network is trained end-to-end with a binary cross-entropy loss.

4.5.2 Experimental Setup

We used the data provided by the SemEval 2021 Task 6 challenge organizers to train and
validate our model. Although we mainly concentrated on subtask 3 (images + texts),
we also tackled subtask 1, which is essentially equivalent to subtask 3, except that only
the text is available.

Dataset The provided dataset comprises 687 memes for training, 63 memes for vali-
dating on the so-called development set, and 200 memes for the final testing. All the
memes carry textual captions written in English. Notice that, in the end, we were al-
lowed to use the annotations for the development set, so we had at our disposal a total
of 750 annotated memes to use for the training and validation phases. The annotations
consist of a list of persuasion techniques for every meme. In subtask 1 there are 20
possible persuasion techniques and 22 in subtask 3.

Metrics The official metrics for computing the model performance are the Micro-F1

and Macro-F1 scores; The F1-score is defined as the harmonic mean of precision and
recall:

F1 =
2

recall−1 + precision−1
. (4.13)

The F1-score gives values in the interval [0, 1], hence it is often a good way of sum-
marizing the performance of binary classifiers. More details on this metric are given
in Section 2.4.2. The difference between Micro-F1 and Macro-F1 scores lies in the
way precision and recall are computed: in Micro-F1, they are computed from all the
true positives, false positives, and false negatives over all the labels; for this reason,
Micro-F1 gives each sample the same weight, thus giving more emphasis to the most
frequent labels. On the other hand, Macro-F1 is computed as the mean value among
the F1-scores computed on the different labels: Macro-F1 = 1

N

∑N
1 F

i
1, where N is the

number of labels and F i
1 is the F1-score computed among the samples having label i.

In this case, all the classes contribute equally regardless of how often they appear in the
dataset.

Model Setup For subtask 3, we used the proposed DVTT model (Figure 4.24b). We
used a learning rate of 5 · 10−5 and a batch size of 8. We trained the models for 40
epochs in all the experiments, decreasing the learning rate after 30 epochs to 5 · 10−6.
The Transformer is composed of 4 encoder layers and 4 decoder layers, with 1024-
dimensional feed-forward networks for producing queries, keys, and values. As a base-
line for subtask 3, we used the VTTE architecture (shown in Figure 4.24a), composed
of a 4-layer Transformer encoder module, with a multi-label classification head on top,
exactly like the one in DVTT. For subtask 1, instead, we used the VTTE architecture

103



i
i

“thesis” — 2022/4/26 — 18:35 — page 104 — #124 i
i

i
i

i
i

Chapter 4. Visual-Textual Matching and Retrieval

(Figure 4.24a) with the same setup used for the subtask 3 baseline, except that the visual
input is not fed to the network.

Features Extraction For all the conducted experiments, we obtained suitable visual and
textual features from pre-trained state-of-the-art networks. Concerning images, we re-
scaled them to 256×256, and we took a 224×224 crop (a random crop during training
and a center crop during inference). We also normalized the images using the pixels
mean and standard deviation computed on the whole dataset. In order to input an im-
age to the Transformer, we had to encode it as a set of features. We used a ResNet50
pre-trained on image classification, as it is characterized by a good performance at low
computational costs compared to deeper backbones; we down-sampled the features
maps from the last convolutional layer to a 7 × 7 spatial grid of 2048-D features. The
resulting flattened 49 visual features were then augmented with their spatial positions
by appending the normalized coordinates of the chunk to the 2048-D visual feature.
Another possibility consisted of using visual features extracted from state-of-the-art
object detectors, like Faster-RCNN. However, images carried in memes are not homo-
geneous: they show possible stacked scenes and overlayed text, making it very difficult
for an object detector to identify the most critical regions. Concerning text process-
ing, we used a pre-trained BERT model [58] for extracting word embeddings. BERT
embeddings are trained on some generic language processing tasks such as sentence
prediction or sentence classification and demonstrated state-of-the-art results in many
downstream tasks. Every meme can carry one or more sentences, encoded in the same
string and separated by "\n\n". For this reason, during the string tokenization phase,
we simply replaced "\n\n" with the SEP token. In the basic DVTT model, we trained
only the Transformer models, leaving the feature extractor fixed. In the Experiments
section, we also report the results from a fine-tuning of the feature extractors.

Validation The test-set annotations were hidden to the participants, so the model should
be validated using a split of the available annotated data. Given that the available an-
notated memes are relatively few, we validated our model using cross-validation. In
particular, we split the training data into six different folds, training six different mod-
els by using five out of six data folds and validating them using the remaining fold.
We selected the model having the best sum of Micro-F1 and Macro-F1 scores on the
validation fold. All the performance measures reported in the Results section are an
average of the metrics from this 6-fold validation procedure. For participating in the
final competition on the test set, we prepared an ensemble model composed of all the
six trained models, and we produced the final probabilities by soft-voting. We used a
final binary-classification threshold of 0.3 over the label probabilities.

4.5.3 Results

Concerning subtask 3, we studied the performance of our DVTT model by comparing
the F1-scores against the VTTE baseline; furthermore, we tried also to train the model
using a balanced sampling of the labels and to fine-tune the feature extractors (BERT
and the ResNet-50), using a learning rate of 1/10 with respect to the one used for
training the Transformer models. Using a lower learning rate during the fine-tuning
process is a common procedure to avoid model overfitting. We also report the results of
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Model Macro-F1 Micro-F1

VTTE (Baseline) 0.327 0.596
DVTT 0.336 0.601
DVTT - Balanced 0.300 0.489
DVTT - Finetuned 0.341 0.592

DVTT - 2 layers 0.310 0.596
DVTT - 6 layers 0.325 0.583

(a) Results for subtask 3.

Model Macro-F1 Micro-F1

VTTE 0.372 0.566
VTTE - Balanced 0.361 0.490
VTTE - Finetuned 0.386 0.581

VTTE - 2 layers 0.365 0.565
VTTE - 6 layers 0.389 0.569

(b) Results for subtask 1.

Table 4.7: Ablation results, reported on the validation set.

Predicted: Appeal to fear/prejudice, 
Exaggeration/Minimisation, Loaded Language, Name 
calling/Labeling, Smears

GT: Glittering generalities (Virtue), Loaded Language, 
Name Calling/Labeling, Smears, Transfer,
Whataboutism

Predicted: Flag-waving, Name calling/Labeling, Smears, 
Transfer

GT: Smears, Appeal to (Strong) Emotions, Name 
calling/Labeling, Flag-waving, Transfer

Figure 4.25: Example of predictions from the DVTT model for subtask 3. In green, the true positives
labels; in red, the false positives labels. Images obey to the Creative Common license and they are
searched on the Bing image-search engine using "free to modify, share and use" license filtering.

slightly different variants of the DVTT model obtained by increasing and decreasing the
number of the Transformer’s encoder / decoder layers: the base architecture contains
four layers; we also experimented with two and six. The results of these experiments
are reported in Table 4.7a.

For subtask 1, instead, we used the VTTE model without visual input, trying out the
same experiments performed for subtask 3. In this case, when varying the number of
layers, we only considered the Transformer Encoder ones (there is no decoder in the
VTTE model). The ablation results on subtask 1 are reported in Table Table 4.7b.

Discussion Looking at the subtask 3 results in Table 4.7a, we can notice that the pro-
posed DVTT model can achieve slightly better results than the VTTE baseline. In
particular, the DVTT with fine-tuned BERT and ResNet50 modules achieve the best
results on the Macro-F1 metric. Also, the choice of using four encoder and decoder
layers seems to lead to the best compromise on both the metrics. Concerning the re-
sults of subtask 1 in Table 4.7b, fine-tuning the BERT model is even in this case a good
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Rank Team Macro-F1 Micro-F1

1 MinD .290 .593
2 Alpha .262 .572
3 Volta .266 .570
4 mmm .303 .548
5 AIMH .245 .539
6 LeCun .227 .512
7 WVOQ .227 .511
8 TeamUNCC .236 .510
9 NLyticsFKIE .140 .498
10 TeiAS .187 .497
11 DAJUST .187 .497
12 YNUHPCC .263 .493
13 CSECUDSG .185 .489
14 TeamFPAI .115 .406
15 NLPIITR .126 .379

Maj. Baseline .033 .374
16 TriHeadAttention .024 .184

Rand. Baseline .044 .064

(a) Results on subtask 1.

Rank Team Macro-F1 Micro-F1

1 Alpha .262 .581
2 MinD .244 .566
3 1213Li .228 .549
4 AIMH .207 .540
5 Volta .189 .521
6 CSECUDSG .121 .513
7 aircasMM .200 .511
8 LIIR .188 .498
9 CAU731NLP .084 .481
10 WVOQ .240 .478
11 YNUHPCC .096 .446
12 TriHeadAttention .062 .442
13 NLyticsFKIE .118 .423

Maj. Baseline .036 .354
14 LT3UGent .264 .332
15 TeamUNCC .124 .224

Rand. Baseline .052 .071

(b) Results on subtask 3.

Table 4.8: Leaderboard of the competition evaluated on the test set. The systems are ordered by Micro-
F1 scores. Majority Baseline selects the most abundant class, while Random Baseline simply assigns
labels at random.

choice. Fine-tuning the feature extractors, in fact, enables the model to slightly adjust
the weights of the backbones pre-trained on generic tasks to align them to the specific
domain.

Figure 4.25 reports some examples of predictions from our model for subtask 3.
We evidenced in green the true positives and in red the false positives. The model can
correctly identify most of the persuasion techniques. However, there are cases where it
is probably necessary to access more contextual information to solve the most complex
labels. For example, in the second meme from the left, the model outputs the label
Exaggeration/Minimisation probably due to the presence of vague quantities (Killed
thousands of innocents). It would be necessary to access external data to effectively
reason on the complex common sense and historical facts hidden behind these complex
memes. In the end, the final leaderboards for both subtasks are reported in Table 4.8.
We placed 5-th and 4-th respectively, maintaining relative small distances from the
podium.

In the future, we plan to improve our visual feature extraction pipeline, using face
expression detection and classification and possibly employing ad-hoc trained object
detectors suitable for meme images. Also, it would be interesting to study the effective
reasoning abilities of the proposed models, by leveraging the attention mechanisms of
the Transformer, possibly integrating the data with a knowledge base of historical facts
that helps to create a more suitable context.
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4.6 Summary

In this chapter, we used Transformer Encoders to jointly process images and texts,
mainly for semantic and relational information retrieval. Specifically, we initially pre-
sented two novel approaches called Transformer Encoder Reasoning Network (TERN)
and Transformer Encoder Reasoning and Alignment Network (TERAN). Both these
approaches use the Transformer self-attention mechanism to relate visual and textual
concepts to create highly semantic features, embedding also entity-entity relationships.
These architectures try to overcome some of the efficiency limitations of current multi-
modal Transformer architectures, very effective but unusable in large-scale retrieval
scenarios. TERN tries to obtain a vectorial description of the two modalities into the
same common space, aggregating the image region and word elements using the Trans-
former attention mechanism. Nevertheless, TERN does not enforce fine-grained align-
ment between image regions and words for a more grounded correspondence between
the two modalities. TERAN tries to solve this drawback by enforcing a fine-grained
match between image regions and words to preserve the informative richness of both
modalities. Both TERN and TERAN features have been explored for applications in
large-scale scenarios, employing quantization and sparsification methodologies with
the aim of using off-the-shelf textual indexing tools. In particular, we introduced the
Bag-of-Concept model as a tool for producing sparse and quantized representations
from sets of contextualized features in output from the proposed architectures. The
TERN features, regularized with TERAN loss, have been employed for enabling text-
to-image searches in VISIONE, an internally developed tool for large-scale video re-
trieval. These features also demonstrated excellent results in S-CBIR, compared to
other state-of-the-art image features using ad-hoc designed semantic retrieval bench-
marks. Finally, deviating a little from the retrieval task, we applied the cross-modal
processing abilities of the Transformer Encoder architecture to detect persuasion tech-
niques in memes. This is a critical task in modern social networks, where images and
texts are improperly employed to perpetuate disinformation campaigns.
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CHAPTER5
Solving the Same-Different Visual Problems

In the previous chapters, we discussed how high-level relational understanding can im-
prove retrieval effectiveness, both in uni- and cross-modal scenarios. Nevertheless, the
research for methods for relational understanding is interesting on its own. Humans
always think by relating distant and abstract concepts through complex analogical rea-
soning. Therefore, it is interesting to understand to which extent a machine learning
algorithm — and a DNN in particular — can solve apparently simple yet challenging
tasks requiring distant comparisons. Given the importance of images in our world, we
are especially interested in tackling abstract visual reasoning problems that require this
kind of relational intelligence to be correctly solved.

This chapter aims to throw some light and partially solve apparently trivial visual
reasoning tasks, known as the same-different tasks. In short, the same-different tasks
consist in understanding if two shapes in an image satisfy a certain rule. In the simplest
case, the rule is merely that the two shapes must be equal; however, the rule is not
known a priori and must be internally understood from the provided positive and neg-
ative examples. An example is given in Figure 5.1. It is a challenging set of tasks for
machine learning algorithms. In fact, it is required not to learn specific shape patterns
to solve the problem; instead, they require to grow some abstract internal representation
that is powerful enough to draw a logical conclusion on a fact hidden in the image (e.g.,
the shapes in the images are the same even if they are orientated in different ways).

Humans perceive the world as a complex set of patterns composite together to form
higher-level structures, such as the repeating chorus in a song. By tackling the same-
different concept, we can better understand the abstract abilities of current deep neural
network models, even outside of the computer vision world. The long-term results from
these studies can be applied in a wide range of disciplines, from robotics and intelligent
video surveillance to cultural heritage preservation.
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5.1. Abstract Visual Reasoning

In Section 5.1 we briefly introduce the current literature behind abstract visual rea-
soning, and we present the same-different visual problems. In Section 5.2 we probe
state-of-the-art CNNs on these challenging visual tasks to check their ability to con-
verge and generalize. Then, in Section 5.3 we propose a Transformer-based recurrent
architecture that can solve these problems while being conceptually simpler and more
data-efficient.

This chapter collects the research published in the following papers:

• Testing Deep Neural Networks on the Same-different Task. International Confer-
ence on Content-Based Multimedia Indexing (CBMI). 2019. [157];

• Solving the Same-different Task with Convolutional Neural Networks. Pattern
Recognition Letters. 2021. [160];

5.1 Abstract Visual Reasoning

Abstract visual reasoning problems are designed to probe the reasoning abilities of ma-
chine learning algorithms, as much as IQ tests are used to measure logical and mathe-
matical intelligence in humans. In some studies, abstract and high-level reasoning abil-
ities are probed using some on-purpose generated complex visual puzzles. Among the
most interesting ones, we find benchmarks such as CLEVR and Sort-of-CLEVR [103],
that probed neural networks on the complex R-VQA task, which consists in answer-
ing questions about complex dispositions of simple 3-D shapes. An interesting re-
search direction in relational and abstract visual understanding is undertaken by [105]
and [151], which developed upon the idea of dynamically assembling an explainable
program conditioned on the image-question pair, able to infer the correct answer by
performing multiple reasoning steps. They reached more than 99% accuracy on the
CLEVR test set. Other than the recently developed CLEVR dataset, other benchmarks
were introduced to test the relational and abstract reasoning abilities of artificial vision
systems. Some works tackled the abstract reasoning abilities of neural networks by
using Raven’s Progressive Matrices (RPM). RPMs consist of visual geometric designs
with a missing part. The test taker is given a small number of different choices to pick
from and fill in the missing piece. In particular, [253] tried to establish a semantic link
between vision and reasoning by employing hierarchical representations suitable for
relational and analytical thinking. Differently, [19] introduced Procedurally Generated
Matrices (PGMs), similar to RPMs but procedurally generated using a detailed algo-
rithm to create a fully controlled environment. They introduced a novel architecture
that defeated popular state-of-the-art models like ResNets. In [240] a synthetic dataset
has been introduced to test the abilities of a network of memorizing configurations.
Although it is similar in essence to 2-D synthetic datasets like Sort-of-CLEVR, it is
specifically designed to study the behavior of working memories.

A simple yet powerful dataset was introduced in [67]. They introduced the Syn-
thetic Visual Reasoning Test (SVRT) dataset, composed of simple images containing
closed shapes. It was developed to test the relational and comparison abilities of artifi-
cial vision systems. In [214] the authors first showed, using the SVRT dataset, that the
tasks involving comparisons between shapes were difficult to solve for convolutional
architectures like LeNet and GoogLeNet [218].
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Chapter 5. Solving the Same-Different Visual Problems

#1 #5 #20 #21

Negative
Examples

Positive
Examples

Figure 5.1: Positive and negative examples from four same-different problems from the SVRT dataset.

5.1.1 The Same-different Problems

The same-different problems are a particular subset of the SVRT dataset. In fact, SVRT
collects a total of 23 different visual problems, that can be further divided into two
clusters: problems related to the spatial arrangement of shapes, and problems regarding
comparisons between shapes. In this work, we are not interested in understanding if the
network is able to understand relative or abstract positions of the shapes in the image.
In this scenario, we are only interested in probing DNNs on shapes comparisons. The
latter set of problems pertain to the same-different challenge, and this is the set that we
are interested in. Every same-different problem comes with a certain rule that should be
discovered by solely looking at some images. Despite having different rules, the same-
different problems have a common underlying difficulty: discerning if two objects in
the same image are the same or not, under different sets of geometric transformations.
The images in SVRT are visually very simple: they contain simple black closed curves
on a white background. Every visual problem in SVRT is divided into two classes: the
set of positive examples, which are the images that satisfy the specific rule, and the set
of negative examples, which do not satisfy the rule.

In [112] the authors proposed an exhaustive evaluation of simple CNN-based net-
works on all the 23 different sub-tasks of the SVRT dataset. According to their findings,
the most difficult same-different problems are the ones related to shape comparison un-
der different geometric transformations (problems no. 1, 5, 20, 21). For this reason,
from this point on, we tackle in great detail only these four challenging problems. In
particular, to solve them we are requested to handle the following challenges: Prob-
lem 1 (P.1) - detecting the very same shapes, randomly placed in the image, with the
same orientation and scale; Problem 5 (P.5) - detecting two pairs of identical shapes,
randomly placed in the image. The two images inside every pair have the same orien-
tation and scale; Problem 20 (P.20) - detecting the same shape, translated and flipped
along a randomly chosen axis; Problem 21 (P.21) - detecting the same shape, randomly
translated, orientated, and scaled. Figure 5.1 shows examples of positive and negative
samples for each of these problems.
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5.2. Solving using CNNs

5.2 Solving using CNNs

CNNs constitute now a standard approach to transform a raw matrix of pixels into some
higher-level representation, and they are used in many downstream tasks. Despite their
success, there are many open problems with current deep architectures, and in partic-
ular with their abstract reasoning abilities. They seem still unable to distill high-level
general concepts that can be transferred to different domains. This brings to low gen-
eralization abilities and often to an overfit to the specific domain on which the network
is trained. Conversely, humans can recognize some shape patterns never seen before,
and they can deduce some general properties of a never seen shape (e.g., is it a closed
shape? Is it the same shape as another one but rotated?). In this work, we probe
many state-of-the-art CNNs, to understand if they are able to solve these challenging
visual task. We also introduce little variations to the presented architectures to better
understand the role of the architectural features in the convergence or generalization
abilities. In particular, we try to remove residual connections from ResNets or residual
and/or recurrent connections from the CorNet-S architectures, to appreciate their role
in the four same-different tasks. We show that the older VGG-19 and AlexNet archi-
tectures, in some specific cases, are able to move away from pure chance accuracy on
the test set, although they cannot reach state-of-the-art results on the presented prob-
lems. In the end, we also perform final zero-shot generalization tests on the converged
architectures, and we show that residual and recurrent connections can have possibly
strong impacts on the final test accuracies. Despite the underlying difficulty in discern-
ing what are the key architectural factors driving the convergence of these networks, we
think that this work evidences in a systematic way the current weaknesses of current
CNN-based vision models.

5.2.1 Method

This work is aimed at probing state-of-the-art architectures forming the basis of mod-
ern computer vision models, and at measuring their abilities to intrinsically perform
abstract visual reasoning. The basic pool of architectures that we probe is composed of
the following state-of-the-art CNNs: AlexNet [117], VGG-19 [138], three variants of
the ResNet [80]: in order of increasing complexity ResNet-18, ResNet-34 and ResNet-
101, and a recently introduced biologically inspired network called CorNet-S [119].

One of our objectives is trying to draw some better conclusions on the architec-
tural factors that contribute to solving the same-different problems. For this reason, we
probe also two versions of the DenseNet architecture, DenseNet-121 and DenseNet-
201, which implement non-residual skip connections, and we explored the Batch Nor-
malized version of the VGG-19. Furthermore, we try to remove important architectural
building-blocks from promising architectures to try to isolate the important architec-
tural factors triggering the convergence. In this regard, we try ResNet-18 and ResNet-
34 without residual connections, and three variations of the CorNet-S obtained by re-
moving recurrent and/or residual connections. Following, we recall the details behind
the architectures that we manage to probe.

VGGs VGG-19 is a simple convolutional architecture comparable with the AlexNet
structure, although it is significantly deeper. The original VGG-19, however, does not
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Chapter 5. Solving the Same-Different Visual Problems

include in its convolutional modules a batch normalization layer. This could be quite
an important detail for reaching network convergence and better stability, especially
if the input image is non-normalized. For this reason, we experimented also with the
VGG-19-BN architecture, which is the Batch Normalized version of the VGG-19. It
simply includes a BatchNorm layer after each Conv2D, before the ReLU activation.

ResNets ResNets introduce residual connections. This kind of skip connection helps
the model to produce incremental differences in the hidden representations, dynami-
cally refining the data passing through the network until it is sufficiently informative for
the downstream task. The experiments on residual-connection removal from ResNet-
18 and ResNet-34 (namely ResNet-18-WS and ResNet-34-WS, where WS = Without
Skip-connections) can highlight the role of residual connections in solving the same-
different task.

DenseNets The novel experiments conducted on DenseNets can spot the differences be-
tween a residual network and a network based on generic skip connections. In fact, the
DenseNets, differently from ResNets, introduce multiple non-residual skip connections
moving lower-level information to each one of the higher-level layers.

CorNet-S The authors in [108] introduced this biologically-inspired network which
evolves the ResNet architecture by introducing recurrent connections. CorNet-S is
inspired by some experimental evidence reported by the authors on primates brain,
claiming that the visual cortex could be comprised of recurrent connections. CorNet-
S is designed to mimick four different brain cortical areas involved with vision; each
one of these four blocks is composed of a recurrent connection together with a resid-
ual skip connection. Thanks to the weight-sharing among timesteps, this architecture
has considerably less learnable parameters than ResNets, and it is therefore an overall
cheaper architecture. The introduced architecture CorNet-S-WR, where WR = Without
Recurrent-connections, is identical to the CorNet-S model but has recurrent connec-
tions removed. This modified network is aimed at spotting out what is the influence of
recurrent connections as far as the same-different problems are concerned. Similarly,
CorNet-S-WS removes the residual connections from the basic CorNet-S model. We
try also to remove both the recurrent and the residual links, giving rise to the CorNet-
S-WR-WS model. Note that CorNet-S-WR, when unrolled, constitutes a very shallow
network. To preserve the original depth, we stack in sequence the internal modules a
number of times equal to the original timesteps proposed by the authors. In this way,
CorNet-S-WR is effectively an unrolled version of CorNet-S, with non-shared weights
among timesteps.

5.2.2 Training

All the previously described architectures come with a final classification head since
they have been mostly used for the task of image classification. In our scenario, instead,
the output must be a binary value indicating if the shapes in the figure correctly satisfy
the rules of the specific SVRT problem or not.

For this reason, we replace the final classification head with a fully-connected layer
outputting a single scalar value, normalized in the range [0, 1] using a final sigmoid
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5.2. Solving using CNNs

CNN network 
being probed

Flatten + FC

Conv.
Core

Sigmoid

1  same

0  not-same
Projection to 
1-dim output

BCE Loss

Figure 5.2: Overview of the network for training on the same-different problems. The architecture of the
network in the large light-gray box depends on the specific convolutional network being probed. It is
usually composed of a core built of CNN layers plus final FC layers with ReLU activations outputting
a fixed-sized vector. We linearly project the output to a single scalar value using a single FC layer.
We then normalize this value in the range [0, 1] with a sigmoid activation function before computing
the Binary Cross-Entropy (BCE) loss.

activation function. The whole network is then trained end-to-end using a Binary Cross-
Entropy (BCE) loss (Figure 5.2).

5.2.3 Experimental setup

For each one of the four same-different benchmarks and every model described in Sec-
tion Section 5.2.1, we use 400k images for training, 100k for validation, and 100k for
testing. All the generated images in the SVRT dataset have a size of 128 × 128 pix-
els. The images were generated with the SVRT original code, available online1. Using
400k training examples could in principle bring to overfitting since the variability of
synthetic datasets is often limited. Nevertheless, we claim that being the figures ran-
domly generated in a 128 × 128 pixels grid, the probability of generating the same
image twice is very low. Furthermore, humans can indeed learn the proposed problems
using only a few samples. However, humans use a lot of pre-learned priors to solve
these tasks, like the rotation/scale invariance, the concept of shape and closed shape,
or the mirroring invariance. Humans, differently from this setup, acquire this knowl-
edge from the experience acquired on a multitude of other tasks, usually by performing
transfer learning. We try to partially solve this data hunger problem in the next section,
introducing a novel hybrid CNN-Transformer architecture.

All the positive and negative examples are perfectly balanced in all the training,
validation, and test sets. For all the probed models, we use SGD as the optimization
algorithm, with a momentum of 0.9, weight decay of 1e-4, and a learning rate of 0.1.
We do not use pre-trained weights if they are available. In fact, since these networks are
trained on image classification from real-world images, the pre-trained weights cannot
deal with the very different distributions of the synthetic SVRT dataset. The input
images are resized to the standard 224× 224 for ResNets and DenseNets architectures.
We perform more experimentation on the VGG-19 and AlexNets models since they are
the ones demonstrating major strain. In particular, for these architectures, we try both
to resize the input images to 224× 224 and to keep the original 128× 128 dimensions.

1https://fleuret.org/git-tgz/svrt
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Chapter 5. Solving the Same-Different Visual Problems

Problem 1 Problem 5 Problem 20 Problem 21

Model Acc. CE Acc. CE Acc. CE Acc. CE

LeNet [214] 57 n.a. 54 n.a. 55 n.a. 51 n.a.
GoogLeNet [214] 50 n.a. 50 n.a. 50 n.a. 51 n.a.
AdaBoost [67] 98 n.a. 87 n.a. 70 n.a. 50 n.a.

AlexNet 50.0 - 50.0 - 50.0 - 50.0 -
AlexNet 224x224 50.0 - 50.0 - 50.0 - 50.0 -
AlexNet norm.input 80.1 - 50.0 - 76.1 - 84.1 -
VGG-19 50.0 - 50.0 - 50.0 - 50.0 -
VGG-19 224x224 50.0 - 50.0 - 50.0 - 50.0 -
VGG-19-BN 50.0 - 50.0 - 50.0 - 50.0 -
VGG-19-BN 224x224 93.8 1.5 93.1 6.0 50.0 - 50.0 -
ResNet-18 99.2 0.5 99.9 2.5 95.5 2.0 96.2 17.5
ResNet-18-WS 98.9 0.5 99.5 2.0 95.7 1.0 96.7 8.5
ResNet-34 98.2 4.5 98.7 1.5 93.8 6.5 96.9 13.0
ResNet-34-WS 98.6 1.0 97.6 1.5 93.6 1.0 90.8 17.5
ResNet-101 99.1 3.5 96.0 3.5 95.8 4.0 91.1 20.5
CorNet-S 96.9 1.0 96.8 2.0 95.0 2.0 96.9 17.0
CorNet-S-WS 95.6 1.5 97.1 2.0 92.7 3.0 90.7 18.5
CorNet-S-WR 94.2 1.5 91.0 7.5 91.5 4.0 88.3 -
CorNet-S-WS-WR 93.5 1.5 92.7 8.0 91.3 7.5 86.5 -
DenseNet-121 99.6 1.0 98.2 2.5 94.2 1.5 95.1 7.0
DenseNet-201 99.5 0.5 99.3 1.5 94.3 1.5 97.5 17.0

Human [67] 98 90 98 83

Table 5.1: Accuracy values (%) measured on the test set of the probed architectures, for each of the four
SVRT problems. Experiments reaching a perfect chance accuracy are reported in gray. The values
reported from [214, 67] did not report any convergence information (CE is n.a.); also, these values
are reported with the same number of significant digits as in the original papers.

Furthermore, since AlexNet is designed with no batch-normalization layers, we tried
to normalize the input images by subtracting the mean and dividing by the standard
deviation of the SVRT dataset.

5.2.4 Results

Experiment 1: Convergence

In this first experiment, we aim to understand if the explored networks can converge
on the four same-different problems. Thus, in this setup, we train the various models,
measuring their accuracy on the test set of the same same-different problem. In this ex-
perimental scenario, we are also interested in measuring what is the strain perceived by
the network during the training phase. For this reason, we desire to capture fine-grained
insights during the training phase, for understanding what is the effect of different ar-
chitectures — or small modifications of them — on the training curves. Reporting the
training curves for all the explored networks is infeasible; however, we can extract some
relevant information from the training curves and summarize them under the form of
a simple metric. To this aim, similarly to [112], we extract from the training curves
the point (expressed in epochs or fraction of epochs) in which the validation accuracy
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Figure 5.3: Training curves for some of the networks trained on P.1 (a) and P.21 (b). The red vertical
line is placed in the correspondence of the convergence epoch (CE). Note that it is not present for the
methods that do not reach at least 90% accuracy on the validation set. For performance reasons we
validate the model every half epoch, so we can provide the CE with a resolution of 0.5 epochs.

reaches 90%. We assume that the more the network is strained, the more examples it
needs during the training phase to reach a good accuracy. We call this particular point
convergence epoch (CE). Together with our measurements, we also report the values as
measured by [214, 67] on LeNet, GoogLeNet, and AdaBoost (using feature group 3).

Looking at Table 5.1, it is clear that most of the configurations derived from AlexNet
and VGG-19 architectures are unable to learn or are particularly strained. More in
detail, almost all the VGG-19 configurations remain on the chance level accuracy of
50%, apart from the VGG-19-BN resized to 224x224. Nevertheless, this configuration
can converge on only two out of four problems, and with accuracies far below the state-
of-the-art reached with ResNets and DenseNets. This is the case even for the AlexNet
with normalized input images. Residual networks, as well as DenseNets, are always
able to converge obtaining state-of-the-art performances on the proposed tasks. Also,
residual and dense networks defeat humans on three of the four tasks. The fact that
both residual and dense networks behave so well suggests that there is no significant
difference between the residual connections and the DenseNet-like skip connections in
this scenario. Furthermore, the ResNets without recurrent connections, (ResNet-18-
WS and ResNet-34-WS) reach almost the same accuracies of the full ResNets, except
in the P.21 where ResNet-34-WS obtains a lower accuracy with a higher CE, indicating
a little strain with respect to the full ResNet-34. Overall, these results suggest that
residual connections may be architectural building-blocks with little impact on the final
test accuracy, as far as the convergence is concerned.

The comparison among the CorNet-S-WS and CorNet-S-WR shows that the lack of
recurrent connections in CorNet-S has a stronger impact than the lack of the residual
ones. Without recurrent connections, CorNet-S cannot reach 90% validation accuracy
on P.21, leaving the CE for this experiment uncharted. Furthermore, the CorNet-S-WS-
WR experiment, which lacks both residual and recurrent connections, reaches accura-
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Chapter 5. Solving the Same-Different Visual Problems

cies on the test set perfectly comparable with the CorNet-S-WR network, suggesting
that the removal of residual connections has not a strong impact on the overall con-
vergence accuracies. We claim that recurrent connections, which implies sharing the
weights among timesteps, help in regularizing and stabilizing the network, and they
impact considerably on the overall test accuracy when removed. In Figure 5.3a and
Figure 5.3b we report also some detailed training insights for some of the architec-
tures present in Table 5.1 and trained on P.1 and P.21 respectively. In particular, Figure
Figure 5.3b shows how P.21 looks immediately more difficult when considering the
training curves. The convergence epochs are very noisy and visibly shifted to the right.
It is worth to mention that P.20 is the only problem that, as of now, is still overtaken
by humans (last row of Table 5.1). This can be due to the intrinsic difficulties of CNNs
networks to discern flipped shapes, on which humans instead are very good.

Experiment 2: Generalization

Following, we test the generalization abilities of the converged models by measuring
their performance on the test set of other problems. We probe the models trained on
P.21 and P.1. In particular, P.21 should force the models to learn most of the required
invariances needed to solve all the other problems (translation, scale, rotation). It is
interesting to understand if the networks trained on P.21 are also able to solve P.1 and
P.5 and to measure their generalization abilities to shapes mirroring (P.20). On the
other hand, P.1 only requires the networks to learn translation invariance; therefore,
it is interesting to understand how well networks trained on this task can deal with
rotation, scale, or mirroring invariance (P.20, P.21). It is also worth trying the P.1
generalization abilities to multiple shapes (P.5). Table 5.2 reports the accuracies for the
most promising models trained on P.1 on the test sets of P.5, P.20, and P.21. Instead,
Table 5.3 provides the accuracies for the most prominent networks trained on P.21 on
the test sets of P.1, P.5, P.20.

Training on P.1 and Testing on the Others Looking at Table 5.2 it turns out that none of
the models obtaining almost-perfect test accuracy on P.1 can understand P.21. This is
reasonable since P.21 requires rotation and scale invariances, difficult to acquire for an
architecture trained on P.1. On the other hand, ResNet-34 can generalize quite well to
P.5. Note that P.5 requires the models to understand that objects should be clustered into
two pairs of possibly identical shapes, and it is not trivial to deduce this information
by learning only from single pairs figures. The architectural changes made to ResNets
and CorNet-S have a visible impact on this generalization scenario, especially when
recurrent and residual connections are removed. For example, when testing on P.5,
ResNet-34 without residual connections (ResNet-34-WS) loses around 10% with re-
spect to the basic architecture, while CorNet-S-WS and CorNet-S-WR lose 13% when
compared to CorNet-S. The lack of both recurrent and residual connections in this sce-
nario brings to a huge loss in accuracy (18%). ResNet-18 seems to be an outlier to
this trend: on P.20, it obtains a better accuracy when the residual connections are re-
moved. On P.20, the higher accuracy is reached by CorNet-S. Although approaching
a test accuracy far below the optimal one, the clear deviation from chance accuracy
suggests that this architecture can partially understand flipped shapes. Remarkably, the
DenseNet networks cannot generalize very well to any of the three test problems.
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Model Test P.5 Test P.20 Test P.21

ResNet-18 56.5 55.6 51.6
ResNet-18-WS 56.4 58.4 51.2
ResNet-34 84.4 61.6 51.5
ResNet-34-WS 75.4 61.3 51.5

CorNet-S 73.6 78.7 52.0
CorNet-S-WS 64.6 76.8 51.7
CorNet-S-WR 63.9 71.3 52.5
CorNet-S-WS-WR 60.7 76.2 52.4

DenseNet-121 58.8 55.3 51.2
DenseNet-201 56.2 54.5 51.3

Table 5.2: Accuracy values (%) measured on the probed architectures, by training on P.1 and testing on
the test sets of the other three problems.

Training on P.21 and Testing on the Others Table 5.3 shows how the models trained on
P.21 can understand also P.1. This is expected since P.1 is a subset of P.21 that does not
deal with scales and orientations of the shapes. A remarkable result can be observed on
the networks tested on P.20: the great part of the networks trained on P.21 can solve this
problem almost perfectly, although P.21 does not carry the concept of shape mirroring.
In particular, DenseNet-201 can reach state-of-the-art results on both P.1 and P.20. In
this generalization scenario, CorNet-S and ResNets suffer from the removal of residual
and recurrent connections only when addressing P.1 and P.20, reaching the minimum
accuracy on these problems with the CorNet-S-WS-WR, where both the residual and
recurrent links are missing. ResNet-18-WS defines an exception to this trend as it
performs better than the full ResNet-18 on these two problems. However, there is an
interesting trend when comparing P.1 or P.20, with P.5. If we focus on the various
CorNet-S versions, we notice that there is a decreasing accuracy trend on P.1 and P.20
when the recurrent and skip connections are gradually removed. Instead, an increasing
trend is visible for P.5, although the absolute values for P.5 remain very low. The same
thing happens for ResNets and DenseNets. The low absolute accuracy values obtained
in P.5 suggest that it is not sufficient to be invariant to rotation, scale, or translation to
understand this problem.

5.3 Solving using Recurrent Transformers

Recently, the Transformer architecture took hold in the field of image processing, as
shown in Section 2.3.4. Initially developed for solving natural language processing
tasks, it found its way into the computer vision world, capturing the interest of the
whole community. Thanks to the ability of the Transformer of relating distant image
patches through the power of the self-attention mechanism, we aim at experimenting
this recent architecture on the challenging same-different problems.

As in-depth discussed in Section 5.2, the more challenging tasks have been par-
tially solved with state-of-the-art convolutional architectures, particularly with ResNets
[69, 182, 34, 160]. From these studies, it has been observed that (a) deep CNNs are
needed, with lots of free parameters, to relate distant zones of the image in search of
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Chapter 5. Solving the Same-Different Visual Problems

Model Test P.1 Test P.5 Test P.20

ResNet-18 97.9 54.2 96.0
ResNet-18-WS 98.3 53.3 96.6
ResNet-34 98.3 59.4 96.6
ResNet-34-WS 94.2 63.4 91.7

CorNet-S 98.6 54.2 97.0
CorNet-S-WS 95.6 59.1 91.7
CorNet-S-WR 92.4 61.4 89.9
CorNet-S-WS-WR 91.7 62.4 87.9

DenseNet-121 96.9 55.7 95.1
DenseNet-201 98.9 50.8 97.4

Table 5.3: Accuracy values measured on the probed architectures, by training on P.21 and testing on the
test sets of the other three problems.

matching patterns, and (b) usually, a lot of data is needed to learn the underlying rule,
while humans can spot it with only a few samples. Furthermore, some works [108] em-
phasized the role of recurrent connections, which can iteratively refine the visual input
until an optimal and stable conclusion is drawn. In the light of these observations, we
introduce a novel architecture, called Recurrent Vision Transformer (RViT), for solving
the same-different problems. It is inspired by both the recent Vision Transformer (ViT)
model [61] and by a recurrent version of the Transformer architecture, the Universal
Transformer [55]. The introduced architecture can understand and relate distant parts
in the image using the powerful Transformer’s attentive mechanism and iteratively re-
fine the final prediction using feedback connections. Notably, we find that the base ViT
model cannot learn any of the same-different tasks, suggesting that both a hybrid archi-
tecture (upstream CNN + downstream Transformer) and feedback connections can be
important features for solving the task. The code for reproducing our results is publicly
available2.

5.3.1 Recurrent Connections and Reasoning

Recurrent models – LSTMs [82] and GRUs [46], to name a few – have been widely used
for dealing with variable-length sequences, especially in the field of Natural Language
Processing (NLP). However, recently, many neuroscience and deep-learning works
claimed the importance of recurrent connections outside the straightforward text pro-
cessing, as they could have an essential role in recognition and abstract reasoning. The
work in [108] claimed that the visual cortex could be comprised of recurrent connec-
tions, and the visual information is refined in successive steps. Recurrent architectures
are used to generate executable programs for compositional reasoning [106, 11]. Dif-
ferently, many works in deep learning tried to achieve Turing-completeness by creating
recurrent architectures with dynamic halting mechanisms [75, 55, 18]. Iterative com-
putation is a key paradigm in algorithmics, but it has been poorly studied in the past
literature. Nevertheless, very recent and pionieering works [238, 222] try to align clas-
sical computation theory — dynamic programming in particular — with deep learning

2https://github.com/mesnico/recurrent_vision_transformer_visual_reasoning
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5.3. Solving using Recurrent Transformers

architectures, showing that Graph Neural Networks can learn graph algorithms with a
better generalization margin. The long-term return from this whole research is to make
neural architectures able to deal with logical and algorithmic thinking, an essential re-
quirement for abstract reasoning.

This work aims at transforming the multi-layer Transformer Encoder (TE) into a
recurrent TE, in which the information from each image patch is propagated to all
the neighbors, as in a GNN with a complete-graph structure. This has the effect of
updating the internal representations using shared computational steps at each iteration;
the message passing is performed until a confident result is obtained.

5.3.2 The Recurrent Vision Transformer Model

The proposed model is based on the recent Vision Transformer – in particular, the
Vision Transformer (ViT) model [61]. The drawback of CNNs in solving the same-
different problems is that sufficiently deep networks are needed to correlate distant
zones in the image. The Transformer-like attention mechanism in ViT helps in creating
short paths between image patches through the self-attention mechanism. Furthermore,
inspired by the role of recurrent connections in the human’s visual cortex [108], we
modify the ViT Transformer encoder module by sharing the encoder weights among
all the T layers (i.e., along the depth dimension), effectively creating a recurrent Trans-
former encoder model, similar to [55]. This has the effect of sharing weights not only
in the sequence dimension as in standard Transformers, but also in the depth dimen-
sion, further constraining the model complexity. Differently from the base ViT which
uses simple linear projections to obtain features from pixels, we instead use a CNN
feature extractor, more capable of understanding low level image features like contours
or edges. For this reason, as a feature extractor, we use a small upstream CNN that
outputs a N × N grid of features that are then used as visual tokens in input to the
Transformer encoder. The overall architecture is shown in Figure 5.4.

By leveraging the recurrent nature of the architecture, we avoid explicitly tuning
the depth of the network (i.e., the total number of recurrent iterations) by forcing the
architecture to perform a prediction at each time step, using the CLS token. The most
likely outcome among the predictions from all the time steps is then taken as the final
prediction. More in detail, the model comprises T binary classification heads, one for
each time step. During training, the Binary Cross-Entropy (BCE) loss at each time step
is computed as

Lt = BCE(yt, ŷ), (5.1)

where yt is the network output from the t-th time step, and ŷ is the ground-truth value.
The various losses are then aggregated to obtain the final loss Ltotal. We noticed that a
simple average 1

T

∑T
t=1 Lt already led to good results. However, we obtained the best

results by using the automatic loss-weighting scheme proposed in [110]:

Ltotal =
1

2

T∑

t

(
1

est
Lt + st

)
, (5.2)

where st is a free scalar parameter that encodes the predicted uncertainty of the classi-
fication at the t-th time step, and the model automatically learns it during the training
phase. We refer readers to [110] for more detailed derivation and discussion.
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Figure 5.4: The RViT architecture. The image is processed by a 4-layer CNN, outputting a 8× 8 grid of
visual features. The CLS token is added to this set, and the tokens are processed multiple times by the
recurrent Transformer Encoder module. At each time step, the binary cross-entropy loss is computed
against the ground-truth labels.

During inference, the maximum-likelihood prediction is taken as the final network
output. In particular, the time step t̄ at which the network reaches the maximum con-
fidence is the one where the output probability is farthest from the pure chance in a
binary classification setup (p=0.5):

t̄ = arg max
t
|yt − 0.5|. (5.3)

At this point, the final output is simply y = yt̄.

5.3.3 Experimental Setup

For the upstream CNN processing the pixel-level information, we used a 4-layer Steer-
able CNN [233]. A Steerable CNN describes E(2)-equivariant (i.e., rotation and reflec-
tion equivariant) convolutions on the image plane R2; in contrast to conventional CNNs,
E(2)-equivariant models are guaranteed to generalize over such transformations other
than simple translation and are therefore more data-efficient. In the ablation study in
Section 5.3.5, we give more insights on the role of Steerable CNNs over standard CNNs
in solving the same-different task.

We forged two different versions of the RViT, a small and a large version, having the
same structure but a different number of hidden neurons in the core layers: the small
RViT produces 256-dimensional keys, queries, and values and outputs 256-dimensional
visual features from the CNN, while the large RViT has these two parameters set to 512.
We used the Adam optimizer; after a minor hyper-parameter tuning, we set the learning
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5.3. Solving using Recurrent Transformers

400k training samples 28k training samples

Model P.1
↑

P.5
↑

P.20
↑

P.21
↑

P.1
↑

P.5
↑

P.20
↑

P.21
↑

#pars
↓

RN [204] 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 0.4M
ViT [61] 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 26M
ResNet-18 [160] 99.2 99.9 95.5 96.2 99.2 98.4 93.7 50.0 11M
ResNet-50 [34] - - - - 95.4 89.9 92.9 72.6 23M
DenseNet-121 [160] 99.6 98.2 94.2 95.1 73.9 54.7 94.4 85.8 6.9M
CorNet-S [160] 96.9 96.8 95.0 96.9 98.8 97.1 92.3 82.5 52M

RViT-small 99.9 99.4 98.9 95.7 99.6 98.0 93.9 78.6 0.9M
RViT-large 99.9 99.0 98.8 96.4 99.6 99.3 95.3 77.8 3.1M

Table 5.4: Accuracy (%) of our method, trained from-scratch, with respect to the baselines. #pars
indicate the number of free parameters of the model.

Model P.1
↑

P.5
↑

P.20
↑

P.21
↑

#pars
↓

ResNet-50 [34] 99.5 98.7 98.9 92.5 23M
RViT ResNet-50/11 99.6 98.6 94.5 91.6 2.3M
RViT ResNet-50/23 99.7 99.7 99.4 85.2 9.5M

Table 5.5: Accuracy (%) of RViT-small, with the first layers of a ResNet-50 pre-trained on ImageNet,
with respect to the full ResNet-50 baseline. In ResNet-50/11 we kept the first 11 layers, while in
ResNet-50/23 the first 23.

rate for all the experiments to 1e-4, and the number of attention heads to 4; we let the
models train for 200 epochs, decreasing the learning rate to 1e-5 after 170 epochs. We
tested the models using the snapshot with the best accuracy measured on the validation
set.

In order to better compare with the ResNet-50 experiments in [34], we also tried
to use as up-stream CNN the first two or three layers of a ResNet-50 pre-trained on
ImageNet. For the image resolution, we mainly used N = 16, outputting 16 × 16
visual tokens from the CNN. During the pre-training experiments, instead, we used
N = 8 for accommodating the output feature map resolution of the pre-trained model
and also for performance reasons. During training, we set the maximum time steps
T = 9.

We collected results using both 28k training images, following [34], and 400k train-
ing images, for comparing our proposed architectures with convolutional networks pre-
viously trained as explained in Section 5.2. We used 18k images both for validation
and testing. As the previous experiments on CNNs, the images were generated using
the generation code provided by the authors of the SVRT dataset [67].

5.3.4 Results

We compared our model with other key architectures: the Relation Network (RN) [204]
which by design should be able to correlate distant zones of the image; the Vision
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Chapter 5. Solving the Same-Different Visual Problems

Transformer (ViT) [61] which recently achieved remarkable performance on classifi-
cation tasks, although it is very data-hungry, and some state-of-the-art convolutional
models — ResNet-18, ResNet-50, CorNet-S and DenseNet-121 — trained on the same
task in [34] and Section 5.2. Notably, CorNet-S also implements feedback connections,
although it is much more complex, in terms of number of parameters, than our RViT
architecture.

Looking at Table 5.4, we can see how neither the Relation Network nor the ViT
converges on the four visual problems, for both 400k and 28k data regimes. The ViT
probably needs more architectural inductive biases to understand the rules, while the
relational mechanism of Relation Network is probably too simple for understanding
the objects in the image and their relationships. Instead, our RViT model can obtain
very competitive results on all tasks and on both data regimes, often outperforming
the baselines. Noticeably, the RViT-small can learn all the four problems using only
0.9M free parameters, about 8 times fewer parameters than the smallest convolutional
network able to solve the task (DenseNet121). This suggests that the model has the
correct structure for understanding the visual problems, without having the possibility
to memorize the patterns.

In Table 5.5, we instead report the accuracy of the small RViT model, where the
upstream path is pre-trained on the classification task on ImageNet, following the work
in [34]. Even in this case, the RViT achieves competitive results, but with much fewer
free parameters and using only a slice – the first 11 and 23 layers – of the pre-trained
ResNet-50 architecture.

5.3.5 Ablation Study

Following, we report some in-depth analysis of the RViTs performed with 28k training
images.

The role of Recurrent Connections and Steerable Convolution

In Table 5.6, we experimented with some variations of the RViT to understand the
roles of recurrent connections and the employed 4-layers steerable CNN. The basic
configuration is Conv. ViT, which is the same as the standard ViT from [61] but with
an upstream CNN as the visual feature extractor, without any recurrent connection. In
contrast to the original ViT formulation, the Conv. ViT can improve significantly on P.1,
P.20, and P.21, moving away from the chance accuracy. However, the most significant
jump in accuracy happens when recurrent connections are introduced (Conv. RViT).
In this case, the same model can learn all the visual problems, with an improvement
of 67% on P.1 and 7% on P.21. Another improvement is obtained when using the
Steerable CNNs [233]. This kind of CNN produces features equivariant to rotations
and reflections. For this reason, it has a wider impact on P.20 and P.21, where shapes
are reflected and rotated, respectively.

Recurrent connections seem to have critical importance. They highly regularize the
model, making it more data-efficient and performing a dynamic iterative computation
that procedurally refines both the previous internal representations and the previous
predictions. To better appreciate this aspect, in Figure 5.5 we show the mean time step
t̄, for each problem, where the model reaches the maximum confidence. Interestingly,
P.1 and P.5 reach the best confidence in few iterations, while the more challenging
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Model P.1
↑

P.5
↑

P.20
↑

P.21
↑

Conv. ViT 59.5 50.0 88.5 62.5
Conv. RViT 99.9 99.0 93.9 66.8
Eq. Conv. RViT 99.8 99.4 95.6 77.3

Table 5.6: Ablation study on Convolutional ViT (Conv. ViT), on Convolutional Recurrent ViT (Conv.
RViT), and Equivariant Convolutional Recurrent ViT (Eq. Conv. RViT). The last one is the model ef-
fectively employed in Table 5.4 and Table 5.5. Accuracy (%) is in this case measured on the validation
set.
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Figure 5.5: The distribution of the best time step t̄ grouped by (a) the two different RViT sizes (small,
large), and (b) by the same-different label.

P.20 and P.21 need much more pondering before stabilizing. More in detail, it can
be noticed that although there is not too much difference considering the size of the
models (Figure 5.5a), the network seems a bit more strained when the shapes are the
same (Figure 5.5b). This is reasonable: it is heavier to be sure that shapes coincide in
every point, while it takes little to find even a single non-matching pattern to output the
answer different.

Visualizing the Attention

In Figure 5.6, we reported a visualization of the self-attention maps learned by the
trained models, computed in specific points (marked with red dots) in the image, and
by averaging the four attention heads. The 16 × 16 grid allows us to appreciate fine
details; in particular, we can see what parts of the shapes the model is attending to for
producing the final answer. In most cases, the model correctly attends the other shape
in search of the corresponding edges. In some instances, the attention map is not so neat
(e.g., in (d) and (f)), emphasizing the intrinsic complexity of the tasks. Furthermore,
in Figure 5.7 we report the evolving attention maps at different time steps. The map
is initially very noisy, but it is slowly refined as the number of iterations increases to
create a stable representation.
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(a) Different shapes (b) Problem 1 - Same shape (c) Problem 5 - Same shape (1st pair)

(d) Problem 5 - Same shape (2nd pair) (e) Problem 20 - Same shape (f) Problem 21 - Same shape

Figure 5.6: Attention visualization on the different visual problems. The red dot shows the point in space
with respect to which the self-attention is computed.

Problem 1

Problem 5

Figure 5.7: Evolving attention maps at different time steps.

5.4 Summary

In this chapter, we explored the ability of DNNs to solve the same-different tasks, a spe-
cific class of visual abstract reasoning problems. We initially probed some state-of-the-
art CNN architectures, finding that they usually require to see many data samples before
converging and an unplanned huge representation power (∼ 1 × 107 free parameters).
Driven by these concerns and inspired by the recent success of the Transformer net-
work in computer vision, we then introduced the Recurrent Vision Transformer (RViT)
model. Thanks to the impact of recurrent connections and spatial attention, this net-
work achieves competitive results on the four referenced same-different problems. The
weight-sharing both in spatial and depth dimensions regularizes the model, allowing it
to learn using less than 1M free parameters, with only 28k training samples. In the end,
this study lays the basis for a deeper understanding of the role of attention and recurrent
connections for solving visual abstract reasoning tasks. Furthermore, it can drive the
research towards deep learning methods for solving slow-thinking logical problems,
requiring multiple iterated basic steps to converge to a solid conclusion. In the future,
we plan to transfer the seeds of this research to real use cases, where multiple possibly
distant inputs need to be related and analyzed to draw a conclusion — for example,
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5.4. Summary

judge if two similar walking pedestrians caught from two different city cameras are the
same person or not, in surveillance applications.
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CHAPTER6
Conclusions

Relationships shape our world, as they enable us to link multiple — and apparently
unrelated — entities creating a new layer of knowledge from sensory data. For exam-
ple, we can conclude that a ball can be kicked if we relate the ball with the football
player which is interacting with it. This would be a challenging conclusion to draw
by solely looking at the ball. In this case, in fact, we would be able to derive some
low-level evidence (e.g., the ball is similar to a sphere, and it has some nice tiled tex-
tures) without being able to understand what a ball is used for or who or what may use
it. Guided by these concerns, in this thesis, we studied relational shortages of current
Deep Neural Networks in multiple application scenarios. In particular, sticking to the
Computer Vision domain, we noticed that the local processing nature of Convolutional
Neural Networks does not enable enough interaction among distant zones in the image,
severely disadvantaging the discovery of important high-level relationships between
actors — objects, animals or persons — in a scene. We explored the application of re-
cently proposed non-local architectures able to discover long-range relationships, such
as Relation Network (RN) [205] and Transformers [220], in the following scenarios:

• we used these novel architectures as feature extractors for obtaining visual and
textual descriptors able to perform very semantic and relationship-aware Content-
based Image Retrieval and Cross-modal Visual-textual Retrieval;

• we explored their application in specific visual abstract reasoning tasks, where
CNNs seem to struggle.

In Chapters 1 and 2, we provided an introduction to this thesis, and we discussed
the relevant background, introducing the Deep Learning framework and the current
state-of-the-art architectures for processing images and natural language texts. We in-
troduced Relation Network, Transformers, and Graph Networks, as the main recently
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proposed architectures able to perform non-local visual and textual processing.
In Chapters 3 and 4, we presented novel relationship-aware networks in the con-

text of semantic information retrieval. In particular, in Chapter 3 we introduced the
challenging task of Relational Content-based Image Retrieval (R-CBIR), which con-
sists in retrieving images with similar spatial relationships among objects. The original
Content-based Image Retrieval (CBIR) task usually deals with instance retrieval, which
does not require a high-level understanding of the content. Instead, it has a high sen-
sitivity to low-level pattern matching, as it requires a good understanding of colors,
shapes, textures. However, apart from inferring the object class, no high-level semantic
is needed to solve the task. In this chapter, we demonstrated how features extracted
from an architecture trained on Relational Visual Question Answering (R-VQA) can
defeat very effective features for instance retrieval, like R-MAC [219], on this novel
R-CBIR task. More in detail, we proposed some modifications to the original Relation
Network formulation, and we extracted visual relationship-aware features from the re-
sulting architectures. We validated these novel features for R-CBIR both quantitatively
— introducing a novel ground-truth based on the CLEVR dataset — and qualitatively,
demostrating the effectiveness of our approach.

We further extended this preliminary work on semantic retrieval in Chapter 4, where
we tackled cross-modal visual-textual retrieval. An alternative way to obtain visual se-
mantic features is to match them with natural language descriptions of the scene, which
usually carry very high-level details, and encode relationships into predicates (e.g.,
"The kid is running in the field"). This, in turn, enabled us to perform visual-textual
retrieval, where we used natural language queries to find images and vice-versa. In this
chapter, we used the novel Transformer architecture to obtain a relational representation
for images and texts. Unlike many state-of-the-art Transformer-based methodologies
for effective image-text matching, this research focused on producing compact repre-
sentations that could be used for efficient and scalable cross-modal retrieval. The visual
features obtained by forwarding only the visual pipeline were also able to perform well
on Semantic Content-based Image Retrieval (S-CBIR) on a recently released bench-
mark for Semantic Image Similarity, called Crisscrossed Captions. With this result, we
demonstrated that architectures jointly trained on images and texts could be used to ex-
tract semantic and relationship-aware image descriptions, closing the loop initiated in
Chapter 3. Furthermore, in Chapter 4, we applied the multi-modal Transformers to an-
other important real-world scenario, namely the detection of persuasion techniques in
social networks. We tackled this problem by using both images and texts from memes,
the most widespread tool used for propagating misinformation, placing in a good posi-
tion in the SemEval 2021 competition leaderboard.

In Chapter 5, we followed a more fundamental line of research, trying to solve vi-
sual abstract reasoning problems requiring the comparison of multiple shapes in an
image. This set of tasks is also known as the same-different problems, introduced with
the SVRT dataset [67]. Although this research is less directly transferable to real-world
applications, it enabled us to understand better what are the limits of current CNNs
when they have to face native relational problems. In particular, the same-different
tasks require the comparison between possibly distant shapes in the image, and the lo-
cal processing performed by CNNs usually cannot discover distant relationships. For
this reason, CNNs usually require a very deep architecture that increases the overall
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complexity and, in turn, requires many data. In this analysis, we tried to shed some
light on the role of residual, skip, and recurrent connections. In particular, thanks to
some biological evidence, recurrent connections seemed to have an essential role in vi-
sual reasoning tasks. Given all these clues, we developed a recurrent CNN-Transformer
architecture that could solve the problems with less free parameters and, in turn, higher
data efficiency. This architecture enabled us to inspect attention weights learned by the
model at different reasoning timesteps, suggesting that attention and recurrent connec-
tions could be the key to reaching better results on abstract reasoning problems.

In the end, in this thesis, we demonstrated that approaches based on relational
Deep Learning brought many improvements in semantic image retrieval, cross-modal
retrieval, and visual reasoning. We argued how relationship-aware descriptors, ex-
tracted from Relation Networks and Transformer-based architectures, could defeat non-
relational descriptors for instance retrieval, obtaining excellent results in R-CBIR and
S-CBIR. In particular, our TERN features obtained an improvement of about 50% with
respect to the R-MAC ones on the novel CxC dataset for Semantic Image Similarity. We
also demonstrated that Transformer Encoders contribute to creating relationship-aware
representations for efficient cross-modal retrieval. At the time of writing, TERAN de-
fined the state-of-the-art approach on visual-textual retrieval, among the approaches
that used late-fusion methods for large-scale search. Furthermore, the hybrid CNN-
Transformer architecture used to solve the same-different problems demonstrated how
perception and brain-inspired reasoning could cooperate to solve abstract visual prob-
lems. With this architecture, comprised of less than 1M free parameters, we obtained
state-of-the-art results on the most challenging tasks from the SVRT dataset, using only
28k training samples.

6.1 Further Activities

During the PhD period, I also participated in other activities that are weakly coupled
with the main topics presented in this thesis. In particular, in the last few years, there
has been an increasing interest in the use of synthetic data to overcome the lack or
scarcity of data for training Deep Neural Networks on particular tasks. An example is
the presented CLEVR dataset, artificially generated to avoid data biases, thus obtaining
a perfect test sandbox. However, synthetic data is also employed to avoid the costly
manual annotation or produce a multitude of real-world scenarios, possibly with custom
lighting or weather conditions.

To this end, I contributed to two works in which we studied the effect of using
synthetic data to train pedestrian detectors for surveillance applications. In the first
work [7], we presented a real-time pedestrian detection system trained using a virtual
environment. In particular, we introduced ViPeD1, a new synthetically generated set of
images extracted from a realistic 3D video game where the labels can be automatically
generated exploiting 2D pedestrian positions extracted from the graphics engine. We
exploited this new synthetic dataset fine-tuning the state-of-the-art YOLO [195] object
detector. A preliminary experimental evaluation, compared to the performance of other
existing approaches trained on real-world images, showed promising results on the
generalization abilities of the trained model on real-world scenarios. In the second work

1http://aimh.isti.cnr.it/viped/
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[48], we further extended these results. We proposed two different domain adaptation
techniques, and we tested our claims on more real-world data, also using another state-
of-the-art object detector, Faster-RCNN [198].

These secondary lines of research are currently active. In the near future, we plan
to merge the results from surveillance camera analysis and relational deep learning
to solve tasks like multi-camera tracking and anomaly detection, handling spatial and
temporal relationships using the tools researched and developed in this thesis.

6.2 Future Work

The research carried out in the main dissertation chapters inspired some interesting fur-
ther studies, in light of very recent and fast developments in these fields. In the follow-
ing paragraphs, we report some of the most promising extensions to the contributions
presented in this thesis.

R-CBIR using cross-modal features In Chapter 3, we introduced some modifications to the
Relation Networks (RNs) to extract meaningful relationship-aware image descriptors
for solving the challenging Relational Content-based Image Retrieval (R-CBIR) task.
In the last few years, we witnessed a growing interest in high-semantic features which
might be natively able to capture spatial relationships like, for example, the CLIP [61]
or the ALIGN [100] features. In this regard, it could be interesting to study their ability
to handle different kinds of object-object spatial relationships and measure how much
their L2 or angular distances correlate with distances between the underlying scene
graphs. Following the results obtained in semantic image retrieval in Section 4.3, it
might be worth conducting the same exploration for the TERN or the TERAN features.

End-to-end learning of the Bag-of-Concepts model In Chapter 4, we introduced the Bag-of-
Concept model, whose aim is to create compact semantic descriptors for cross-modal
retrieval. The obtained vectors have an immediate and explainable interpretation, as
each dimension encodes the presence of each of the abstract concepts present in the
image or in the text. Nevertheless, the creation of the concept codebook and the spar-
sification of the final vector are implemented as post-processing operations after the
features extraction process. It would be interesting to develop an architecture equipped
with an internal memory working as a learned codebook, automatically refined during
the training process. Also, it would be possible to automatically sparsify the generated
vectors so that the training process can automatically find the best compromise between
sparsity — and, in turn, efficiency — and effectiveness of the produced cross-modal
features.

Fine-grained scalable cross-modal search The use of large-scale retrieval frameworks —
either vector-based indexes such as FAISS2 or text-based engines like Lucene used to
index multimedia data like explained in Chapter 4 — is constrained to a simple concept:
the item that we want to index, as well as the query that we submit to the system, should
be represented as single fixed-sized vectors, laying in some Rn manifold. In this way,
cosine similarity and its properties can be leveraged to enable effective and large-scale

2https://github.com/facebookresearch/faiss
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search. In most of cases, this interface is just the right compromise between efficiency
and effectiveness. Nevertheless, it can be constrictive for fine-grained search, espe-
cially in cross-modal scenarios. For example, there are cases in which we would like to
weigh the words differently in the query sentence to acquire more control over the im-
age retrieval process at query time. This is unfeasible unless we consider fine-grained
region-words associations during the indexing and the search phases. Following this
line of research, a very recent work [147] proposed to use a weighted Bag-of-Words
(BoW) to describe each image as a set of words, obtaining remarkable results on MS-
COCO and Flickr30k, while being very efficient when implemented in inverted lists.
This approach seems similar to the Bag-of-Concept model, except that it uses words
from the original sentence and not high-level concepts automatically learned by the net-
work. Another possibility would be to use metric-space approaches defined on graphs
or set structures to obtain fine-grained similarity scores. In particular, we could rely
on the work in [16], which proposed a fast way to compute the Wasserstain distance
between two different sets of vectors.

Text-to-Video search In Chapter 4, we used the developed text-to-image search tools for
addressing large-scale video retrieval. Videos were considered a set of independent
keyframes so that video retrieval could be trivially cast to an image retrieval problem.
Nevertheless, the exploitation of the temporal domain is required to understand actions
or camera movements, as we noticed while discussing the Textual KIS Task from the
VBS challenge. Given these current limitations, we manage to extend our work on
cross-modal retrieval by taking into account also the time domain. Recently, many
effective text-to-video features have been proposed, like the W2VV++ features [130],
or the CLIP image features [191] intelligently aggregated among consecutive frames to
work on videos [181, 148, 45]. It would be interesting to follow this research direction
to enable, as in TERAN, a closer interaction between tubes — the extension of image
regions to spatio-temporal video regions — and words from the query sentence.

Interactive cross-modal search Another promising extension to the research presented in
Chapter 4 would be the modification of the search paradigm to include more interactive
search strategies. Specifically, we consider the search system interactive if it employs
user feedback to refine the search results in a continuous feedback loop. In this sense,
it could be interesting to extend TERN to the task of retrieving images given an (image,
text) pair instead of relying on the textual query alone. The problem could be framed
as in [76], where a deep neural network is trained to alter the semantics of an input
image using a modification text. In this way, we could initially retrieve images using
some natural text (e.g.: "A pink dressed woman"). Then, we could refine the results
by feeding back the images retrieved at the previous search step, integrating them with
some other textual insights (e.g.: "The woman wears black shoes"). This interactive
search paradigm based on user feedback is gaining increasing attention in information
retrieval [141, 252], and it may be worth assessing the deployment of similar methods
in VISIONE [8].

Abstract reasoning in more challenging scenarios We in-depth studied the behavior of Deep
Neural Networks in very specific and challenging abstract visual reasoning problems,
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the same-different problems, in Chapter 5. However, it would be interesting to probe the
proposed networks on more challenging abstract reasoning problems, such that the one
proposed in the more recent PGM [19] or in the RAVEN [253] datasets. These bench-
marks collect matrices of figures similar to those proposed in IQ tests for humans, and
the objective is to find the missing image from a set of candidate answers. These puz-
zles require high-level, abstract, and analogical reasoning capabilities to be solved. It
would be interesting to test some variations of the recurrent Vision Transformer pro-
posed in Chapter 5 on these challenging tasks to check if the conclusions drawn on
the same-different task also apply to these scenarios. Furthermore, it would be inter-
esting to study these networks’ analogical and relational skills in real-world settings,
where perception and reasoning work together to solve critical tasks like multi-camera
anomaly detection or multi-target tracking in surveillance applications.
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