

The LZ77 algorithm

https://archive.is/20130107232302/http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz

/lz77.html

Terms used in the algorithm

 Input stream: the sequence of characters to be compressed;

 Character: the basic data element in the input stream;

 Coding position: the position of the character in the input stream that is currently being

coded (the beginning of the lookahead buffer);

 Lookahead buffer: the character sequence from the coding position to the end of the input

stream;

 The Window of size W contains W characters from the coding position backwards, i.e. the

last W processed characters;

 A Pointer points to the match in the window and also specifies its length.

The principle of encoding
The algorithm searches the window for the longest match with the beginning of the lookahead

buffer and outputs a pointer to that match. Since it is possible that not even a one-character match

can be found, the output cannot contain just pointers. LZ77 solves this problem this way: after each

pointer it outputs the first character in the lookahead buffer after the match. If there is no match, it

outputs a null-pointer and the character at the coding position.

The encoding algorithm

1. Set the coding position to the beginning of the input stream;

2. find the longest match in the window for the lookahead buffer;

3. output the pair (P,C) with the following meaning:

o P is the pointer to the match in the window;

o C is the first character in the lookahead buffer that didn't match;

4. if the lookahead buffer is not empty, move the coding position (and the window) L+1

characters forward and return to step 2.

An example
The encoding process is presented in Table 1.

 The column Step indicates the number of the encoding step. It completes each time the

encoding algorithm makes an output. With LZ77 this happens in each pass through the step

3.

 The column Pos indicates the coding position. The first character in the input stream has the

coding position 1.

 The column Match shows the longest match found in the window.

 The column Char shows the first character in the lookahead buffer after the match.

 The column Output presents the output in the format (B,L) C:

o (B,L) is the pointer (P) to the Match. This gives the following instruction to the

decoder: "Go back B characters in the window and copy L characters to the output";

o C is the explicit Character.

https://archive.is/20130107232302/http:/oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz77.html
https://archive.is/20130107232302/http:/oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz77.html
vcadmin
Casella di testo
May be of interest to understand the principle of the ZIP compression algorithm. Not needed for the Digital Library exam.

Input stream for encoding:

Pos 1 2 3 4 5 6 7 8 9

Char A A B C B B A B C

Table 1: The encoding process

Step Pos Match Char Output

1. 1 -- A (0,0) A

2. 2 A B (1,1) B

3. 4 -- C (0,0) C

4. 5 B B (2,1) B

5. 7 A B C (5,2) C

Decoding
The window is maintained the same way as while encoding. In each step the algorithm reads a pair

(P,C) from the input. It outputs the sequence from the window specified by P and the character C.

Practical characteristics
The compression ratio this method achieves is very good for many types of data, but the encoding

can be quite time-consuming, since there is a lot of comparisons to perform between the lookahead

buffer and the window. On the other hand, the decoding is very simple and fast. Memory

requirements are low both for the encoding and the decoding. The only structure held in memory is

the window, which is usually sized between 4 and 64 kilobytes.

The LZ78 algorithm

https://archive.is/20130107200800/http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz

/lz78.html

Terms used in the algorithm

 Charstream: a sequence of data to be encoded;

 Character: the basic data element in the charstream;

 Prefix: a sequence of characters that precede one character;

 String: the prefix together with the character it precedes;

 Code word: a basic data element in the codestream. It represents a string from the

dictionary;

 Codestream: the sequence of code words and characters (the output of the encoding

algorithm);

 Dictionary: a table of strings. Every string is assigned a code word according to its index

number in the dictionary;

 Current prefix: the prefix currently being processed in the encoding algorithm. Symbol: P;

 Current character: a character determined in the endocing algorithm. Generally this is the

character preceded by the current prefix. Symbol: C.

 Current code word: the code word currently processed in the decoding algorithm. It is

signified by W, and the string which it denotes by string.W.

Encoding
At the beginning of encoding the dictionary is empty. In order to explain the principle of encoding,

let's consider a point within the encoding process, when the dictionary already contains some

strings.

We start analyzing a new prefix in the charstream, beginning with an empty prefix. If its

corresponding string (prefix + the character after it -- P+C) is present in the dictionary, the prefix is

extended with the character C. This extending is repeated until we get a string which is not present

in the dictionary. At that point we output two things to the codestream: the code word that

represents the prefix P, and then the character C. Then we add the whole string (P+C) to the

dictionary and start processing the next prefix in the charstream.

A special case occurs if the dictionary doesn't contain even the starting one-character string (for

example, this always happens in the first encoding step). In that case we output a special code word

that represents an empty string, followed by this character and add this character to the dictionary.

The output from this algorithm is a sequence of code word-character pairs (W,C). Each time a pair

is output to the codestream, the string from the dictionary corresponding to W is extended with the

character C and the resulting string is added to the dictionary. This means that when a new string is

being added, the dictionary already contains all the substrings formed by removing characters from

the end of the new string.

https://archive.is/20130107200800/http:/oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz78.html
https://archive.is/20130107200800/http:/oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz78.html

The encoding algorithm

1. At the start, the dictionary and P are empty;

2. C := next character in the charstream;

3. Is the string P+C present in the dictionary?

1. if it is, P := P+C (extend P with C);

2. if not,

1. output these two objects to the codestream:

 the code word corresponding to P (if P is empty, output a zero);

 C, in the same form as input from the charstream;

2. add the string P+C to the dictionary;

3. P := empty;

3. are there more characters in the charstream?

 if yes, return to step 2;

 if not:

1. if P is not empty, output the code word corresponding to P;

2. END.

Decoding
At the start of decoding the dictionary is empty. It gets reconstructed in the process of

decoding. In each step a pair code word-character -- (W,C) is read from the codestream. The

code word always refers to a string already present in the dictionary. The string.W and C are

output to the charstream and the string (string.W+C) is added to the dictionary. After the

decoding, the dictionary will look exactly the same as after the encoding.

The decoding algorithm

4. At the start the dictionary is empty;

5. W := next code word in the codestream;

6. C := the character following it;

7. output the string.W to the codestream (this can be an empty string), and then output

C;

8. add the string.W+C to the dictionary;

9. are there more code words in the codestream?

 if yes, go back to step 2;

 if not, END.

An example
The encoding process is presented in Table 1.

o The column Step indicates the number of the encoding step. Each encoding step is

completed when the step 3.b. in the encoding algorithm is executed.

o The column Pos indicates the current position in the input data.

o The column Dictionary shows what string has been added to the dictionary. The

index of the string is equal to the step number.

o The column Output presents the output in the form (W,C).

o The output of each step decodes to the string that has been added to the dictionary.

Charstream to be encoded:

Pos 1 2 3 4 5 6 7 8 9

Char A B B C B C A B A

Table 1: The encoding process

Step Pos Dictionary Output

1. 1 A (0,A)

2. 2 B (0,B)

3. 3 B C (2,C)

4. 5 B C A (3,A)

5. 8 B A (2,A)

Practical characteristics
The biggest advantage over the LZ77 algorithm is the reduced number of string comparisons

in each encoding step. The compression ratio is similar to the LZ77. Since the derived

method, LZW, is much more popular, you should see there for further info.

https://archive.is/o/MIGS8/oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz77.html
https://archive.is/o/MIGS8/oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lzw.html%23practical

The LZW algorithm

https://archive.is/20130107170646/http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz

/lzw.html

In this algorithm, the same terms are used as in LZ78, with the following addendum:

 A Root is a single-character string.

Differences to the LZ78 in the principle of encoding

 Only code words are output. This means that the dictionary cannot be empty at the start: it

has to contain all the individual characters (roots) that can occurr in the charstream;

 Since all possible one-character strings are already in the dictionary, each encoding step

begins with a one-character prefix, so the first string searched for in the dictionary has two

characters;

 The character with which the new prefix starts is the last character of the previous string (C).

This is necessary to enable the decoding algorihtm to reconstruct the dictionary without the

help of explicit characters in the codestream.

The encoding algorithm

1. At the start, the dictionary contains all possible roots, and P is empty;

2. C := next character in the charstream;

3. Is the string P+C present in the dictionary?

1. if it is, P := P+C (extend P with C);

2. if not,

1. output the code word which denotes P to the codestream;

2. add the string P+C to the dictionary;

3. P := C (P now contains only the character C);

3. are there more characters in the charstream?

 if yes, go back to step 2;

 if not:

1. output the code word which denotes P to the codestream;

2. END.

Decoding: additional terms

o Current code word: the code word currently being processed. It's signified with cW,

and the string it denotes with string.cW;

o Previous code word: the code word that precedes the current code word in the

codestream. It's signified with pW, and the string it denotes with string.pW.

The principle of decoding
At the start of decoding, the dictionary looks the same as at the start of encoding -- it

contains all possible roots.

https://archive.is/20130107170646/http:/oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lzw.html
https://archive.is/20130107170646/http:/oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lzw.html
https://archive.is/o/Kcr3Y/oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz78.html

Let's consider a point in the process of decoding, when the dictionary contains some longer

strings. The algorithm remembers the previous code word (pW) and then reads the current

code word (cW) from the codestream. It outputs the string.cW, and adds the string.pW

extended with the first character of the string.cW to the dictionary. This is the character that

would have been explicitly read from the codestream in LZ78. Because of this principle, the

decoding algorithm "lags" one step behind the encoding algorithm with the adding of new

strings to the dictionary.

A special case occurrs if the cW denotes an empty entry in the dictionary. This can happen

because of the explained "lagging" behind the encoding algorithm. It happens if the

encoding algorithm reads the string that it has just added to the dictionary in the previous

step. During the decoding this string is not yet present in the dictionary. A string can occurr

twice in a row in the charstream only if its first and last character are equal, because the next

string always starts with the last character of the previous one. This leads to the following

decoding rule: the string.pW is extended with its own first character and the resulting string

is added to the dictionary and output to the charstream.

The decoding algorithm

6. At the start the dictionary contains all possible roots;

7. cW := the first code word in the codestream (it denotes a root);

8. output the string.cW to the charstream;

9. pW := cW;

10. cW := next code word in the codestream;

11. Is the string.cW present in the dictionary?

 if it is,

1. output the string.cW to the charstream;

2. P := string.pW;

3. C := the first character of the string.cW;

4. add the string P+C to the dictionary;

 if not,

1. P := string.pW;

2. C := the first character of the string.pW;

3. output the string P+C to the charstream and add it to the dictionary

(now it corresponds to the cW);

12. Are there more code words in the codestream?

 if yes, go back to step 4;

 if not, END.

An example
The encoding process is presented in Table 1.

o The column Step indicates the number of the encoding step. Each encoding step is

completed when the step 3.b. in the encoding algorithm is executed.

o The column Pos indicates the current position in the input data.

o The column Dictionary shows the string that has been added to the dictionary and

its index number in brackets.

o The column Output shows the code word output in the corresponding encoding step.

Contents of the dictionary at the beginning of encoding:

 (1) A
 (2) B
 (3) C

Charstream to be encoded:

Pos 1 2 3 4 5 6 7 8 9

Char A B B A B A B A C

Table 1: The encoding process

Step Pos Dictionary Output

1. 1 (4) A B (1)

2. 2 (5) B B (2)

3. 3 (6) B A (2)

4. 4 (7) A B A (4)

5. 6 (8) A B A C (7)

6. -- -- (3)

Table 2. explains the decoding process. In each decoding step the algorithm reads one code

word (Code), outputs the corresponding string (Output) and adds a string to the dictionary

(Dictionary).

Table 2: The decoding process

Step Code Output Dictionary

1. (1) A --

2. (2) B (4) A B

3. (2) B (5) B B

4. (4) A B (6) B A

5. (7) A B A (7) A B A

6. (3) C (8) A B A C

Let's analyze the step 4. The previous code word (2) is stored in pW, and cW is (4). The

string.cW is output ("A B"). The string.pW ("B") is extended with the first character of the

string.cW ("A") and the result ("B A") is added to the dictionary with the index (6).

We come to the step 5. The content of cW=(4) is copied to pW, and the new value for cW is

read: (7). This entry in the dictionary is empty. Thus, the string.pW ("A B") is extended with

its own first character ("A") and the result ("A B A") is stored in the dictionary with the

index (7). Since cW is (7) as well, this string is also sent to the output.

Practical characteristics
This method is very popular in practice. Its advantage over the LZ77-based algorithms is in

the speed because there are not that many string comparisons to perform. Further

refinements add variable code word size (depending on the current dictionary size), deleting

of the old strings in the dictionary etc. For example, these refinements are used in the GIF

image format and in the UNIX compress utility for general compression.

Another interesting variation is the LZMW algorithm. It forms a new entry in the dictionary

by concatenating the two previous ones. This enables a faster buildup of longer strings.

The LZW method is patented -- the owner of the patent is the Unisys company. It allows

free use of the method, except for the producers of commercial software.

https://archive.is/o/Kcr3Y/www.unisys.com/LeadStory/lzwfaq.html

