
Corso di Biblioteche Digitali

 Vittore Casarosa
– casarosa@isti.cnr.it
– tel.  050-621 3115
– cell. 348-397 2168
– Skype vittore1201

 Ricevimento dopo la lezione o per appuntamento
 Valutazione finale

– 70% esame orale
– 30% progetto (una piccola biblioteca digitale)

 Materiale di riferimento:
– Ian Witten, David Bainbridge, David Nichols, How to build a Digital Library, Morgan 

Kaufmann, 2010, ISBN 978-0-12-374857-7 (Second edition)
– Materiale fornito dal Professore

 http://cloudone.isti.cnr.it/casarosa/BDG/
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Modules

 Computer Fundamentals and Networking
 A conceptual model for Digital Libraries
 Bibliographic records and metadata
 Information Retrieval and Search Engines
 Knowledge representation
 Digital Libraries and the Web
 Hands-on laboratory: the Greenstone system

UNIPI BDG 24-25 Vittore Casarosa – Biblioteche Digitali WordEmbedding - 2



Representation of words 
(and documents)

 In “traditional” Information Retrieval, documents are 
represented as “Bag of Words”
– It means that no information is retained about the “context” 

of the word
 In a given corpus, each word can be represented as a 

“one-hot vector”, i.e. a vector as long as the lexicon with 
just one 1 in the position of the word and zeros in all other 
positions
– Very long vectors (hundred of thousands of elements, all of 

them zeros except one)
 With Word embedding we move to short and dense 

vectors (hundreds of elements and no zeros), capturing 
the information provided by the context of the word 
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Document as vectors
of term frequency

each document (and each query) is now represented as a sequence
(a vector) of zeros and numbers, i.e. each number is the number of
occurrences of the term in the document
As before, the number of components of the vectors is equal to the 
size of the lexicon
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 In conclusion, the weight of each term i in each 
document d (        ) is usually given by the following 
formula (or very similar variations), called the tf.idf weight

 Increases with the number of occurrences within a doc
 Increases with the rarity of the term across the whole corpus

Final weight: tf x idf (or tf.idf)
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Word embedding

 In “traditional” Information Retrieval, documents are 
represented as “Bag of Words”
– It means that no information is retained about the “context” 

of the word
 In a given corpus, each word can be represented as a 

“one-hot vector”, i.e. a vector as long as the lexicon with 
just one 1 in the position of the word and zeros in all other 
positions
– Very long vectors (hundred of thousands of elements, all of 

them zeros except one)
 With Word embedding we move to short and dense 

vectors (hundreds of elements and no zeros), capturing 
the information provided by the context of the word 
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How to learn such Embedding ?

 Use context information
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Words in context
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Continuous Bag of Words 
(CBOW)

Skip-Ngram

Word2Vec
main context representation models
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Distributed Representations of Words and Phrases and their 
Compositionality, Mikolov et al, 2013
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Neural networks
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Word2Vec neural network

 Input layer one input for each word in the lexicon 
(one-hot vector)

 Output layer one node for each word in the 
lexicon, giving the probability for that word to be 
part of the context of the input

 Only one hidden layer
 The number of nodes of the hidden layer is the 

dimension of the vectors representing the words
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CBOW and Skipgram
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Word2Vec: Data generation 
(window size = 2)

Example: d1 = “king brave man” , d2 = “queen beautiful women”
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Word2Vec : Neural Network 
representation
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Word2Vec : Neural Network 
representation
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Word2Vec : Neural Network 
representation
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Word2Vec : Neural Network 
representation
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Word2Vec : Neural Network 
representation
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Word2Vec : Neural Network 
representation
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Word2Vec : Neural Network 
representation
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Word2Vec vector representation

 The outout node should give the probability for each word in 
the lexicon to be part of the context of the word(s) provided in 
input

 During learning, the parameters of the neural network are 
adjusted in order to increase the probability of the words in the 
context

 The parameters being adjusted are the weights of the input 
layer and/or the weights of the hidden layer

 At the end of the learning process, those weights represent the 
vector representation of the words in the lexicon

 This process clusters the words with similar meaning in the 
multimensional space defined by the number of components of 
the vectors representing the words 
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Example

 vector[Queen] ≈ vector[King] - vector[Man] + vector[Woman]
 vector[Italy] ≈ vector[France] - vector[ Paris] + vector[ Rome]
 vector[Paris] ≈ vector[France] - vector[ Italy] + vector[ Rome]

– This can be interpreted as “France is to Paris as Italy is to Rome”.
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Relations Learned by Word2Vec

 A relation is defined by the vector displacement in the first 
column. For each start word in the other column, the closest 
displaced word is shown.

 “Efficient Estimation of Word Representations in Vector Space” Tomas 
Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Arxiv 2013
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