Corso di Biblioteche Digitali

- Vittore Casarosa
- casarosa@isti.cnr.it
- tel. 050-621 3115
- cell. 348-397 2168
- Skype vittore1201
- Ricevimento dopo la lezione o per appuntamento
- Valutazione finale
- 70\% esame orale
- 30% progetto (una piccola biblioteca digitale)
- Materiale di riferimento:
- Ian Witten, David Bainbridge, David Nichols, How to build a Digital Library, Morgan Kaufmann, 2010, ISBN 978-0-12-374857-7 (Second edition)
- Materiale fornito dal Professore
- http://cloudone.isti.cnr.it/casarosa/BDG/

Modules

- Computer Fundamentals and Networking
- A conceptual model for Digital Libraries
- Bibliographic records and metadata
- Information Retrieval and Search Engines
- Knowledge representation
- Digital Libraries and the Web
- Hands-on laboratory: the Greenstone system

Representation of words (and documents)

- In "traditional" Information Retrieval, documents are represented as "Bag of Words"
- It means that no information is retained about the "context" of the word
- In a given corpus, each word can be represented as a "one-hot vector", i.e. a vector as long as the lexicon with just one 1 in the position of the word and zeros in all other positions
- Very long vectors (hundred of thousands of elements, all of them zeros except one)
- With Word embedding we move to short and dense vectors (hundreds of elements and no zeros), capturing the information provided by the context of the word

Document as vectors of term frequency

lexicon	Document vectors $\left\langle w_{d, t}\right\rangle$									
	col	day	eat	hot	$10 t$	nin	old	pea	por	pot
1	1	0	0	1	0	0	0	2	2	0
doc 2	0	0	0	0	0	0	0	1	1	1
doc 3	0	1	0	0	0	1	1	0	0	0
mis >4	1	0	0	1	0	0	0	0	0	2
5	0	0	0	0	0	0	0	2	2	0
6	0	0	1	0	1	0	0	0	0	0
eat	0	0	1	0	0	0	0	0	0	0
hot porridge	0	0	0	1	0	0	0	0	1	0

each document (and each query) is now represented as a sequence (a vector) of zeros and numbers, i.e. each number is the number of occurrences of the term in the document
As before, the number of components of the vectors is equal to the size of the lexicon

Final weight: tf x idf (or tf.idf)

- In conclusion, the weight of each term i in each document $d\left(w_{i, d}\right)$ is usually given by the following formula (or very similar variations), called the tf.idf weight

$$
w_{i, d}=t f_{i, d} \times \log \left(n / d f_{i}\right)
$$

$t f_{i, d}=$ frequency of term i in document d
$n=$ total number of documents
$d f_{i}=$ the number of documents that contain term i

- Increases with the number of occurrences within a doc
- Increases with the rarity of the term across the whole corpus

Word embedding

- In "traditional" Information Retrieval, documents are represented as "Bag of Words"
- It means that no information is retained about the "context" of the word
- In a given corpus, each word can be represented as a "one-hot vector", i.e. a vector as long as the lexicon with just one 1 in the position of the word and zeros in all other positions
- Very long vectors (hundred of thousands of elements, all of them zeros except one)
- With Word embedding we move to short and dense vectors (hundreds of elements and no zeros), capturing the information provided by the context of the word

How to learn such Embedding?

- Use context information
...he curtains open and the moon shining in on the barely...
...ars and the cold, close moon ". And neither of the w...
...rough the night with the moon shining so brightly , it...
...made in the light of the moon. It all boils down , wr...
...surely under a crescent moon , thrilled by ice-white...
...sun , the seasons of the moon ? Home, alone , Jay pla...
...m is dazzling snow , the moon has risen full and cold...
...un and the temple of the moon , driving out of the hug...
...in the dark and now the moon rises, full and amber a...
...bird on the shape of the moon over the trees in front...

Words in context

Word2Vec

main context representation models

Continuous Bag of Words
(CBOW)

Distributed Representations of Words and Phrases and their Compositionality, Mikolov et al, 2013

Neural networks

hidden layer 1 hidden layer 2

Word2Vec neural network

- Input layer one input for each word in the lexicon (one-hot vector)
- Output layer one node for each word in the lexicon, giving the probability for that word to be part of the context of the input
- Only one hidden layer
- The number of nodes of the hidden layer is the dimension of the vectors representing the words

CBOW and Skipgram

Word2Vec: Data generation (window size = 2)

Example: d 1 = "king brave man" , d2 = "queen beautiful women"

word	Word one hot encoding	neighbor	Neighbor one hot encoding
king	$[1,0,0,0,0,0]$	brave	$[0,1,1,0,0,0]$
brave	$[0,1,0,0,0,0]$	man	$[1,0,1,0,0,0]$
mang	$[0,0,1,0,0,0]$	man	king
queen	$[0,0,0,1,0,0]$	brave	$[1,1,0,0,0,0]$
beautiful	$[0,0,0,0,1,0]$	beautiful	$[0,0,0,0,1,1]$
woman	$[0,0,0,0,0,1]$	quemen	$[0,0,0,1,0,1]$
		women	$[0,0,0,1,1,0]$

Word2Vec : Neural Network

 representationInput layer

Word2Vec : Neural Network

 representation

Word2Vec : Neural Network

 representation

Word2Vec : Neural Network

 representation

Word2Vec : Neural Network

 representationInput layer

beautiful
women

Word2Vec : Neural Network

 representation

Word2Vec : Neural Network

 representation

Input layer

Output (sigmoid)
queen
beautiful

Word2Vec vector representation

- The outout node should give the probability for each word in the lexicon to be part of the context of the word(s) provided in input
- During learning, the parameters of the neural network are adjusted in order to increase the probability of the words in the context
- The parameters being adjusted are the weights of the input layer and/or the weights of the hidden layer
- At the end of the learning process, those weights represent the vector representation of the words in the lexicon
- This process clusters the words with similar meaning in the multimensional space defined by the number of components of the vectors representing the words

Example

Male-Female

Verb tense

Country-Capital

- vector[Queen] \approx vector[King] - vector[Man] + vector[Woman]
- vector[Italy] \approx vector[France] - vector[Paris] + vector[Rome]
- vector[Paris] \approx vector[France] - vector[Italy] + vector[Rome]
- This can be interpreted as "France is to Paris as Italy is to Rome".

Similarity in vector space

- Similarity between vectors d_{1} and d_{2} is captured by the cosine of the angle x between them.
- Note - this is similarity, not distance

Relations Learned by Word2Vec

- A relation is defined by the vector displacement in the first column. For each start word in the other column, the closest displaced word is shown.

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: (arger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

