

Corso di Biblioteche Digitali

- Vittore Casarosa
 - Mail: casarosa@isti.cnr.it
 - Tel: 050 621 3115 (office) 348 397 2168 (mobile)
 - Skype: vittore1201
- "Ricevimento" at the end of the lessons or by appointment
- Final assessment
 - 70% oral examination
 - 30% project (development of a small digital library))
- Reference material:
 - Ian Witten, David Bainbridge, David Nichols, How to build a Digital Library, Morgan Kaufmann, 2010, ISBN 978-0-12-374857-7 (Second edition)
 - Material provided by the teacher
- http://cloudone.isti.cnr.it/casarosa/BDG/

Modules

Computer Fundamentals and Networking

- A conceptual model for Digital Libraries
- Bibliographic records and metadata
- Information Retrieval and Search Engines
- Knowledge representation
- Digital Libraries and the Web
- Hands-on laboratory: the Greenstone system

Refresher

Refresher on Computer Fundamentals and Networking

History of computers

- Architecture of a computer
- Computer networks and the Internet
- Data representation within a computer

Early devices (not computers)

Abacus 2500 BC


Pascalina 1645

Early visions (of computers)

Charles Babbage 1791-1871

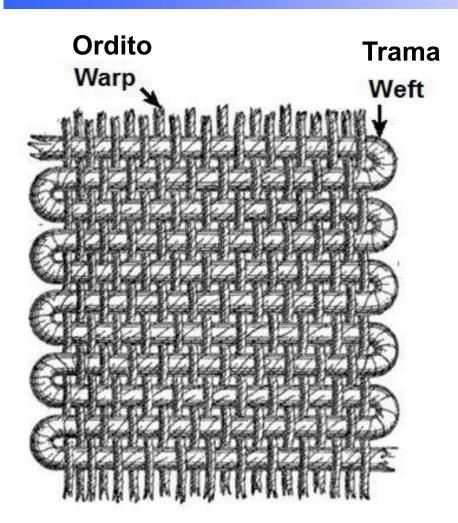
Professor of Mathematics, Cambridge University, 1827-1839

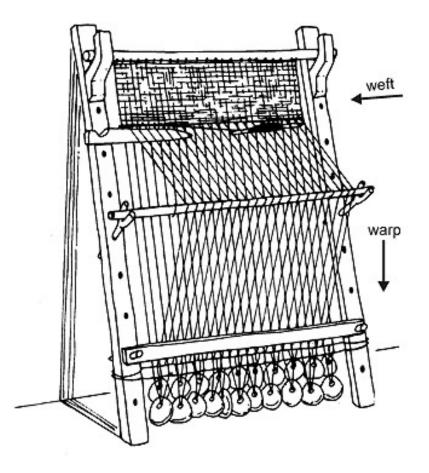
Babbage's engines

- Difference Engine 1823
- Analytic Engine 1833
 - The forerunner of modern digital computer

Application

- Mathematical Tables Astronomy
- Nautical Tables Navy


Technology

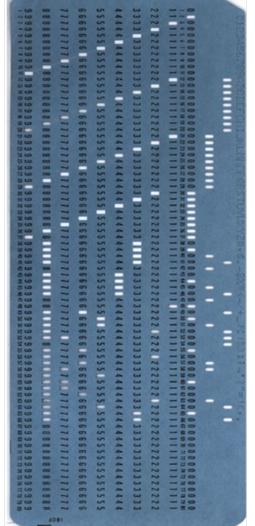

 mechanical gears, Jacquard's loom (1801), simple calculators

The loom

Use of punched paper tape



The organ grinder



«Programmable» carillon and punched cards

Early experiments 100 years later

- Z1 machine (Konrad Zuse, private entrepreneur, 1936-1941)
- ABC (Atanasoff-Berry Computer, Iowa State University, 1937-1942)
- Mark I (Howard Aiken, MIT, 1937-1941)

1942 Second World War

Harvard Mark I

Built in 1944 in IBM Endicott laboratories

- Howard Aiken Professor of Physics at Harvard
- Essentially mechanical but had some electro-magnetically controlled relays and gears
- Weighed 5 tons and had 750,000 components
- A synchronizing clock that beat every 0.015 seconds (66KHz)

Performance:

- 0.3 seconds for addition
- 6 seconds for multiplication
- 1 minute for a sine calculation

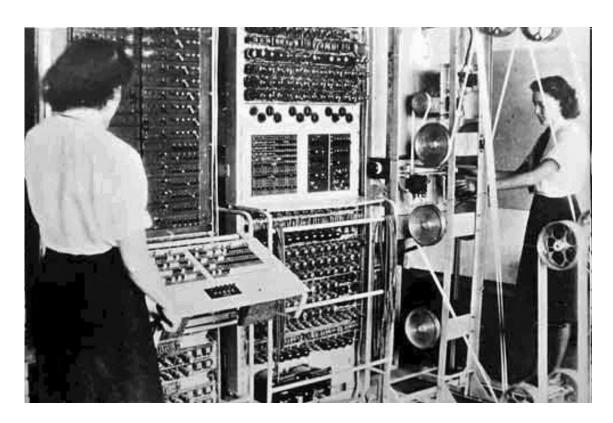
WW-2 Fffort

Broke down once a week!

ENIAC

- Inspired by Atanasoff and Berry, Eckert and Mauchly designed and built ENIAC (1943-45) at the University of Pennsylvania
- The first, completely electronic, operational, general-purpose analytical calculator!
 - 30 tons, 72 square meters, 200KW
- Performance
 - Read in 120 cards per minute
 - Addition took 200 μs, Division 6 ms
 - 1000 times faster than Mark I
- Not very reliable!

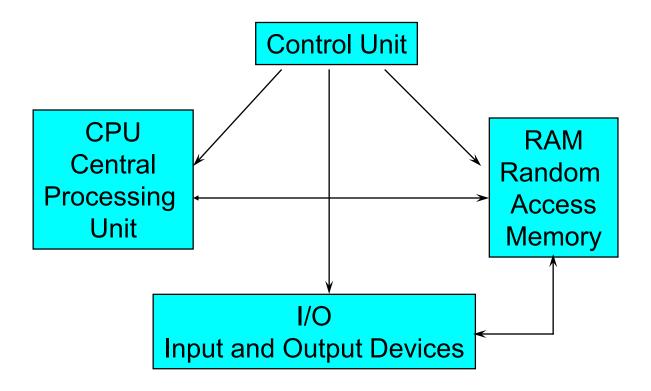
Application: Ballistic calculations



Colossus

Colossus (derived from Mark 1 and Mark 2) was used in London during the second World War to decipher secret German messages (Enigma machine)

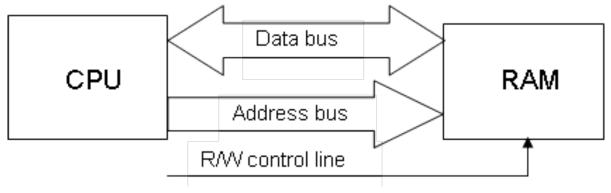
EDVAC - Electronic Discrete Variable Automatic Computer



- ENIAC's programming system was external
 - Sequences of instructions were executed independently of the results of the calculation
 - Human intervention required to take instructions "out of order"
- Eckert, Mauchly, John von Neumann and others designed EDVAC (1944) to solve this problem
 - Solution was the stored program computer
 - ⇒ "program can be manipulated as data"
- First Draft of a report on EDVAC was published in 1945, but just had von Neumann's signature
- In 1973 the court of Minneapolis attributed the honor of inventing the computer to John Atanasoff

Basic components of a computer

Von Neuman architecture


- The RAM contains both the program (machine instructions) and the data
- The basic model is "sequential execution"
 - each instruction is extracted from memory (in sequence) and executed
- Basic execution cycle
 - Fetch instruction (from memory) at location indicated by LC
 - Increment Location Counter (to point to the next instruction)
 - Bring instruction to CPU
 - Execute instruction
 - Fetch operand from memory (if needed)
 - Execute operation
 - Store result
 - in "registers" (temporary memory in the CPU)
 - in memory (RAM)

Random Access Memory

- The RAM is a linear array of "cells", usually called "words"
- The words are numbered from 0 to N, and this number is the "address" of the word
- In order to read/write a word from/into a memory cell, the CPU has to provide its address on the "address bus"
- A "control line" tells the memory whether it is a read or write operation
- In a read operation the memory will provide on the "data bus" the content of the memory cell at the address provided on the "address bus"
- In a write operation the memory will store the data provided on the "data bus" into the memory cell at the address provided on the "address bus"

Data within a computer

- The Control Unit, the RAM, the CPU and all the physical components in a computer act on electrical signals and on devices that (basically) can be in only one of two possible states
- The two states are conventionally indicated as "zero" and "one" (0 and 1), and usually correspond to two voltage levels
- The consequence is that all the data within a computer (or in order to be processed by a computer) has to be represented with 0s and 1s, i.e. in "binary notation"

Evolution of computer technology

- First Generation mechanical/electromechanical
- Second Generation vacuum tubes
- Third Generation discrete transistors (solid state devices) SSI, MSI, LSI integrated circuits
- Fourth Generation
 VLSI integrated circuits

VLSI = Very Large Scale Integration

Evolution of computer components

- Computer technology
 - CPU on integrated chips
 - From KHz to MHz to GHz
 - Random Access Memories
 - RAM from KB to MB to GB
 - External memories
 - Tapes, hard disks, floppy disks
 - Memory sticks
 - CDs
 - DVDs
 - from MB to GB to TB to PB to EB

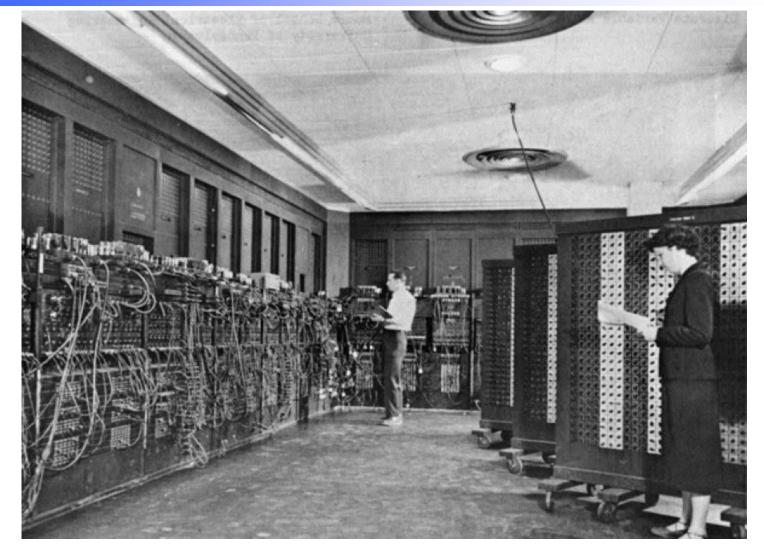
Size of digital information

1000	k	kilo
1000 ²	М	mega
1000 ³	G	giga
10004	T	tera
1000 ⁵	Р	peta
1000 ⁶	Е	exa
1000 ⁷	Z	zetta
10008	Υ	yotta

Evolution of the software

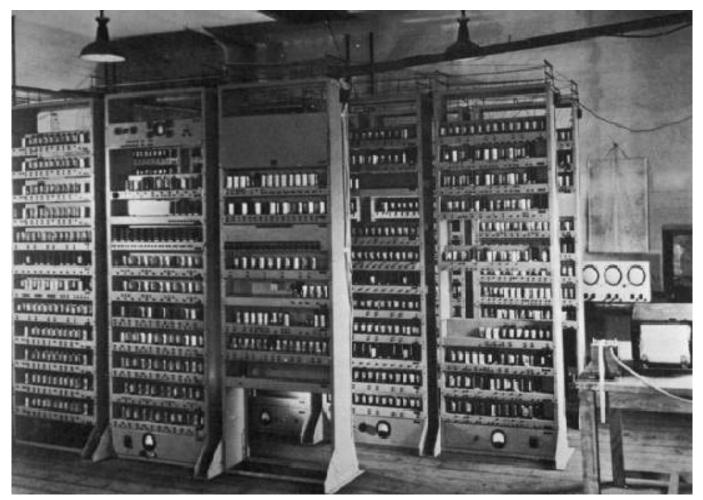
- Operating systems
 - Multi user
 - Multi tasking
- Applications
 - Client-Server
 - Multimedia
- Communication

Evolution of computer market



- Military applications in early 40s
- Scientific/research applications in late 40s
- Commercial applications appear in early 50s
- Monopoly of IBM starts with 650, 701, 702
- Monopoly of IBM continues with 7070, 7090 and the 360 series, starting the "mainframe era" (in the 60s)
- Arrival of the "minicomputers" in the 70s
- Arrival of the PC in the 80s
- Arrival of the Internet in the 90s
- Arrival of the Web in the 90s

ENIAC - Electronic Numerical Integrator And Computer



EDSAC - Electronic Delay Storage Automatic Calculator

EDSAC, University of Cambridge, UK, 1949

A "mainframe" in the 60'

A "mainframe" in the 70'

Minicomputers

Early PCs

Evolution of technology

- Computer technology
 - CPU and integrated chips
 - Random Access Memories
 - RAM from KB to GB
 - External memories
 - Tapes, hard disks, floppy disks
 - Memory sticks
 - CDs
 - DVDs
 - from MB to GB to TB to PB to EB
- Communication technology (networks)
 - (Telephone) line speed
 - Point to point (leased lines)
 - Local Area Networks
 - Inter-networking (TCP/IP)